已知-
π
2
<α<β<
π
2
,求α-2β的取值范圍.
考點(diǎn):不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:利用不等式的基本性質(zhì)即可得出.
解答: 解:∵-
π
2
<β<
π
2
,∴-π<-2β<π,
又-
π
2
<α<
π
2
,
-
2
<α-2β<
2

又∵α-β<0,∴α-2β<-β<
π
2

-
2
<α-2β<
π
2
點(diǎn)評:本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在區(qū)間(a,b)的零點(diǎn)按精確度為ε求出的結(jié)果與精確到ε求出的結(jié)果可以相等,則稱函數(shù)y=f(x)在區(qū)間(a,b)的零點(diǎn)為“和諧零點(diǎn)”.試判斷函數(shù)f(x)=x3+x2-2x-2在區(qū)間(1,1.5)上,按ε=0.1用二分法逐次計(jì)算,求出的零點(diǎn)是否為“和諧零點(diǎn)”.(參考數(shù)據(jù)f(1.25)=-0.984,f(1.375)=-0.260,f(1.438)=0.165,f(1.4065)=-0.052)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:實(shí)數(shù)x滿足x2-x-6>0或x2+2x-8≤0,q:實(shí)數(shù)x滿足x2-3ax+2a2<0,且¬p是¬q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知am-1+am+1-am2=0,S2m-1=38,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(3,-sin2x),
b
=(cos2x,
3
),f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的最大值及取最大值時x的集合;
(Ⅲ)求滿足f(a)=-
3
且0<α<π的角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:1+a1+2a2+3a3+…+nan=2n,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列bn=
2n
an
(n∈N*),試求數(shù)列{tanbn•tanbn+1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=-
1
x-1
在區(qū)間(-∞,0)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足條件
7x-5y-23≤0
x+7y-11≤0
4x+y+10≥0
,求:
(1)4x-3y的最大值和最小值;
(2)x2+y2的最大值和最小值;
(3)
y+8
x-5
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x+3|+|x-1|≥6的解集是
 

查看答案和解析>>

同步練習(xí)冊答案