1.已知函數(shù)f(x)=ax+7,f(-3)=5,則f(3)的值為(  )
A.9B.-9C.-5D.7

分析 利用函數(shù)的解析式求出a,然后求解函數(shù)值即可.

解答 解:函數(shù)f(x)=ax+7,f(-3)=5,
可得-3a+7=5,解得a=$\frac{2}{3}$,
函數(shù)的解析式為:f(x)=$\frac{2}{3}$x+7
f(3)=$\frac{2}{3}×3+7=9$.
故選:A.

點評 本題考查函數(shù)的解析式的求法,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知直線l1:(2a+b)x+(a+b)y+a-b=0與直線l2:m2x+2y-2n2=0恒有一個公共點,則m+n的最大值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知f(x)=ax2+2x在[2,4]上單調(diào),則a的取值范圍是a≤-$\frac{1}{2}$或a≥-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在復(fù)平面內(nèi),復(fù)數(shù)z=i(1+2i)的共軛復(fù)數(shù)( 。
A.2-iB.-2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16. 已知兩個圓錐有公共底面,且兩圓錐的頂點和底面的圓周都在同一個球面上.若圓錐底面面積是這個球面面積的$\frac{3}{16}$,求這兩個圓錐中,體積較小者與體積較大者的高的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.下列結(jié)論正確的是(2)(3).
(1)函數(shù)f(x)=sinx在第一象限是增函數(shù);
(2)△ABC中,“A>B”是“cosA<cosB”的充要條件;
(3)設(shè)$\overrightarrow{a}$,$\overrightarrow$是非零向量,命題“若|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|,則?t∈R,使得$\overrightarrow{a}$=t$\overrightarrow$”的否命題和逆否命題都是真命題;
(4)函數(shù)f(x)=2x3-3x2,x∈[-2,t](-2<t<1)的最大值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)設(shè)函數(shù)f(x)=2x+3,g(x+2)=f(x),求g(x)的表達式.
(2)已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=-$\sqrt{x}$(1+x),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.定義在R上的偶函數(shù)f(x)在[0,+∞)內(nèi)單調(diào)遞減,則下列判斷正確的是( 。
A.f(2a)<f(-a)B.f(π)>f(-3)C.$f(-\frac{{\sqrt{3}}}{2})<f(\frac{4}{5})$D.f(a2+1)<f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+$\frac{a-x}{x}$,其中a為常數(shù),且a>0.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線y=$\frac{1}{2}$x+1垂直,求a的值;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

同步練習冊答案