【題目】已知兩點A(﹣1,2),B(m,3).且實數(shù)m∈[﹣ ﹣1, ﹣1],求直線AB的傾斜角α的取值范圍.

【答案】解:①當m=﹣1時,直線AB傾斜角α= ; ②當m≠﹣1時,直線AB的斜率為
∵m+1∈[﹣ , ],
∴k= ∈(﹣∞,﹣ ]∪[ ,+∞),
∴α∈[ , )∪( ],
綜合①②知,直線AB的傾斜角α∈∈[ ]
【解析】分類討論,當m=﹣1時,直線AB傾斜角α= ;②當m≠﹣1時,直線AB的斜率為 ,再利用正切函數(shù)的單調(diào)性求出傾斜角α的范圍
【考點精析】掌握直線的傾斜角是解答本題的根本,需要知道當直線l與x軸相交時, 取x軸作為基準, x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時, 規(guī)定α=0°.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).
(1)寫出樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個的矩形),被截取一角(即), ,平面平面, .

(1)證明: ;

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)求曲線焦點的極坐標,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且曲線處的切線與平行.

(1)求的值;

(2)當時,試探究函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 則(
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經(jīng)過圓心C時,求直線l的方程; (寫一般式)
(2)當直線l的傾斜角為45°時,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)= (ax﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的單調(diào)性(不要求證明);
(2)若有g(shù)(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范圍.

查看答案和解析>>

同步練習冊答案