已知橢圓:的離心率為,過右焦點(diǎn)且斜率為的直線交橢圓兩點(diǎn),為弦的中點(diǎn),為坐標(biāo)原點(diǎn).
(1)求直線的斜率;
(2)求證:對于橢圓上的任意一點(diǎn),都存在,使得成立.

(1)
(2) 顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實(shí)數(shù),使得等式成立.,那么設(shè)出點(diǎn)M的坐標(biāo),結(jié)合向量的坐標(biāo)關(guān)系來證明。

解析試題分析:解:(1)設(shè)橢圓的焦距為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/78/1/1au8x2.png" style="vertical-align:middle;" />,所以有,故有.
從而橢圓的方程可化為: 
①  知右焦點(diǎn)的坐標(biāo)為(),據(jù)題意有所在的直線方程為:. ②由①,②有:.                                        
③設(shè),弦的中點(diǎn),由③及韋達(dá)定理有:
 
所以,即為所求.                       5分
(2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實(shí)數(shù),使得等式成立.設(shè),由(1)中各點(diǎn)的坐標(biāo)有:
,故.   7分
又因?yàn)辄c(diǎn)在橢圓上,所以有整理可得:
.       ④
由③有:.所以
   ⑤又點(diǎn)在橢圓上,故有 .      
⑥將⑤,⑥代入④可得:.                 11分
所以,對于橢圓上的每一個(gè)點(diǎn),總存在一對實(shí)數(shù),使等式成立,且.
所以存在,使得.也就是:對于橢圓上任意一點(diǎn) ,總存在,使得等式成立.         13分
考點(diǎn):橢圓的方程和性質(zhì),以及向量的加減法
點(diǎn)評:解決的關(guān)鍵是根據(jù)橢圓的性質(zhì)以及直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓C以拋物線的焦點(diǎn)為右焦點(diǎn),且經(jīng)過點(diǎn)A(2,3).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若分別為橢圓的左右焦點(diǎn),求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(1)求曲線C1的普通方程
(2)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點(diǎn),求|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)(,).

(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線與該橢圓交于、兩點(diǎn),滿足直線,,的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直接坐標(biāo)系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線L的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直角坐標(biāo)系中,一直角三角形,,B、D在軸上且關(guān)于原點(diǎn)對稱,在邊上,BD=3DC,△ABC的周長為12.若一雙曲線以B、C為焦點(diǎn),且經(jīng)過A、D兩點(diǎn).

⑴ 求雙曲線的方程;
⑵ 若一過點(diǎn)為非零常數(shù))的直線與雙曲線相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)、,且,問在軸上是否存在定點(diǎn),使?若存在,求出所有這樣定點(diǎn)的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)命題p:函數(shù)上是增函數(shù);命題q:方程有兩個(gè)不相等的負(fù)實(shí)數(shù)根。求使得pq是真命題的實(shí)數(shù)對為坐標(biāo)的點(diǎn)的軌跡圖形及其面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

Δ兩個(gè)頂點(diǎn)的坐標(biāo)分別是,邊所在直線的斜率之積等于,求頂點(diǎn)的軌跡方程,并畫出草圖。

查看答案和解析>>

同步練習(xí)冊答案