分析 先求函數(shù)f(x)=x2-lnx的定義域,再求導可判斷函數(shù)的單調(diào)性,從而可得f(x)≥f($\frac{\sqrt{2}}{2}$)=$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$>0;從而確定答案.
解答 解:函數(shù)f(x)=x2-lnx的定義域為(0,+∞),
f′(x)=2x-$\frac{1}{x}$=$\frac{2{x}^{2}-1}{x}$;
故x∈(0,$\frac{\sqrt{2}}{2}$)時,f′(x)<0;
x∈($\frac{\sqrt{2}}{2}$,+∞)時,f′(x)>0;
故f(x)≥f($\frac{\sqrt{2}}{2}$)=$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$>0;
故函數(shù)f(x)=x2-lnx沒有零點;
故答案為:0.
點評 本題考查了導數(shù)的應用及函數(shù)的零點的判斷,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 44 | B. | 66 | C. | 100 | D. | 132 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-$\frac{2}{3}$ e | B. | 1+$\frac{2}{3}$e | C. | $\frac{2}{3}$e | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com