求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程
(Ⅰ)求以橢圓
x2
13
+
y2
3
=1
的焦點(diǎn)為焦點(diǎn),以直線y=±
1
2
x
為漸近線
(Ⅱ)雙曲線的兩條對(duì)稱軸是坐標(biāo)軸,實(shí)軸長(zhǎng)是虛軸長(zhǎng)的一半,且過(guò)點(diǎn)(3,2)
分析:(I)由橢圓
x2
13
+
y2
3
=1
可得c=
13-3
=
10
,得到焦點(diǎn)
10
,0)
.設(shè)雙曲線的標(biāo)準(zhǔn)方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),可得a2+b2=(
10
)2=10
.又
b
a
=
1
2
.聯(lián)立解得即可.
(II)由題意可知:焦點(diǎn)在x軸上.設(shè)雙曲線的標(biāo)準(zhǔn)方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),由于實(shí)軸長(zhǎng)是虛軸長(zhǎng)的一半,且過(guò)點(diǎn)(3,2).可得
b=2a
9
a2
-
4
b2
=1
,解得即可.
解答:解:(I)由橢圓
x2
13
+
y2
3
=1
可得c=
13-3
=
10
,得到焦點(diǎn)
10
,0)

設(shè)雙曲線的標(biāo)準(zhǔn)方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),∴a2+b2=(
10
)2=10

b
a
=
1
2
.聯(lián)立
a2+b2=10
a=2b
,解得
a2=8
b2=2

因此所求的雙曲線的方程為:
x2
8
-
y2
2
=1

(II)由題意可知:焦點(diǎn)在x軸上,
設(shè)雙曲線的標(biāo)準(zhǔn)方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),
∵實(shí)軸長(zhǎng)是虛軸長(zhǎng)的一半,且過(guò)點(diǎn)(3,2).
b=2a
9
a2
-
4
b2
=1
,解得
a2=8
b2=32
,
∴雙曲線的標(biāo)準(zhǔn)方程為
x2
8
-
y2
32
=1
點(diǎn)評(píng):本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)為F1(0,-1)、F2(0,1)且過(guò)點(diǎn)M(
3
2
,1)
橢圓;
(2)與雙曲線x2-
y2
2
=1
有相同的漸近線,且過(guò)點(diǎn)(2,2)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,頂點(diǎn)到準(zhǔn)線的距離為4;
(2)頂點(diǎn)是雙曲線16x2-9y2=144的中心,準(zhǔn)線過(guò)雙曲線的左頂點(diǎn),且垂直于坐標(biāo)軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)求兩個(gè)焦點(diǎn)坐標(biāo)分別為(-4,0)和(4,0),且經(jīng)過(guò)點(diǎn)(5,0)的橢圓的標(biāo)準(zhǔn)方程;
(2)與雙曲線
x2
9
-
y2
16
=1
有共同的漸近線,且過(guò)點(diǎn)(-3,2
3
)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在 x軸上,虛軸長(zhǎng)為12,離心率為 
5
4
;
(2)頂點(diǎn)間的距離為6,漸近線方程為y=±
3
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高二第二學(xué)期期中考試數(shù)學(xué)文試卷(解析版) 題型:解答題

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:

(1)焦點(diǎn)為、且過(guò)點(diǎn)橢圓;

(2)與雙曲線有相同的漸近線,且過(guò)點(diǎn)的雙曲線.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案