【題目】圓心在曲線上,與直線x+y+1=0相切,且面積最小的圓的方程為( 。
A. x2+(y-1)2=2B. x2+(y+1)2=2C. (x-1)2+y2=2D. (x+1)2+y2=2
【答案】A
【解析】
設(shè)與直線x+y+1=0平行與曲線相切的直線方程為x+y+m=0,切點(diǎn)為P(x0,y0),x0>﹣1,解得x0,可得切點(diǎn)P即圓心,利用點(diǎn)到直線的距離公式可得半徑r,求解即可.
設(shè)與直線x+y+1=0平行與曲線相切的直線方程為x+y+m=0,
切點(diǎn)為P(x0,y0).x0>0.
y′=﹣,∴﹣=﹣1,x0>﹣1,解得x0=0.可得切點(diǎn)P(0,1),
兩條平行線之間的距離為面積最小的圓的半徑;∴半徑r== .
∴圓心在曲線上,且與直線x+y+1=0相切的面積最小的圓的方程為:x2+(y﹣1)2=2.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個(gè)樹形圖:
易知第三行有白圈5個(gè),黑圈4個(gè).我們采用“坐標(biāo)”來(lái)表示各行中的白圈、黑圈的個(gè)數(shù).比如第一行記為,第二行記為,第三行記為.照此規(guī)律,第行中的白圈、黑圈的“坐標(biāo)”為,則________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某保險(xiǎn)公司的某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | |
保費(fèi)(元) |
隨機(jī)調(diào)查了該險(xiǎn)種的400名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到下表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | |
頻數(shù) | 280 | 80 | 24 | 12 | 4 |
該保險(xiǎn)公司這種保險(xiǎn)的賠付規(guī)定如下:
出險(xiǎn)序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
賠付金額(元) | 0 |
將所抽樣本的頻率視為概率.
(Ⅰ)求本年度續(xù)保人保費(fèi)的平均值的估計(jì)值;
(Ⅱ)按保險(xiǎn)合同規(guī)定,若續(xù)保人在本年度內(nèi)出險(xiǎn)3次,則可獲得賠付元;若續(xù)保人在本年度內(nèi)出險(xiǎn)6次,則可獲得賠付元;依此類推,求本年度續(xù)保人所獲賠付金額的平均值的估計(jì)值;
(Ⅲ)續(xù)保人原定約了保險(xiǎn)公司的銷售人員在上午10:30~11:30之間上門簽合同,因?yàn)槔m(xù)保人臨時(shí)有事,外出的時(shí)間在上午10:45~11:05之間,請(qǐng)問(wèn)續(xù)保人在離開前見到銷售人員的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,,,,且對(duì)時(shí),有.
(Ⅰ)設(shè)數(shù)列滿足,,證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一矩形硬紙板材料(厚度忽略不計(jì)),一邊長(zhǎng)為6分米,另一邊足夠長(zhǎng).現(xiàn)從中截取矩形(如圖甲所示),再剪去圖中陰影部分,用剩下的部分恰好能折卷成一個(gè)底面是弓形的柱體包裝盒(如圖乙所示,重疊部分忽略不計(jì)),其中是以為圓心、的扇形,且弧,分別與邊, 相切于點(diǎn), .
(1)當(dāng)長(zhǎng)為1分米時(shí),求折卷成的包裝盒的容積;
(2)當(dāng)的長(zhǎng)是多少分米時(shí),折卷成的包裝盒的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子工廠生產(chǎn)一種電子元件,產(chǎn)品出廠前要檢出所有次品.已知這種電子元件次品率為0.01,且這種電子元件是否為次品相互獨(dú)立.現(xiàn)要檢測(cè)3000個(gè)這種電子元件,檢測(cè)的流程是:先將這3000個(gè)電子元件分成個(gè)數(shù)相等的若干組,設(shè)每組有個(gè)電子元件,將每組的個(gè)電子元件串聯(lián)起來(lái),成組進(jìn)行檢測(cè),若檢測(cè)通過(guò),則本組全部電子元件為正品,不需要再檢測(cè);若檢測(cè)不通過(guò),則本組至少有一個(gè)電子元件是次品,再對(duì)本組個(gè)電子元件逐一檢測(cè).
(1)當(dāng)時(shí),估算一組待檢測(cè)電子元件中有次品的概率;
(2)設(shè)一組電子元件的檢測(cè)次數(shù)為,求的數(shù)學(xué)期望;
(3)估算當(dāng)為何值時(shí),每個(gè)電子元件的檢測(cè)次數(shù)最小,并估算此時(shí)檢測(cè)的總次數(shù)(提示:利用進(jìn)行估算).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)區(qū)間;
(2)證明:若,對(duì)任意的,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面內(nèi),將一個(gè)圖形繞一點(diǎn)按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn),如圖,小盧利用圖形的旋轉(zhuǎn)設(shè)計(jì)某次活動(dòng)的徽標(biāo),他將邊長(zhǎng)為a的正三角形ABC 繞其中心O逆時(shí)針旋轉(zhuǎn)到三角形A1B1C1,且.順次連結(jié)A,A1,B,B1,C,C1,A,得到六邊形徽標(biāo)AA1BB1CC1 .
(1)當(dāng)=時(shí),求六邊形徽標(biāo)的面積;
(2)求六邊形徽標(biāo)的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間與極值;
(2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com