【題目】隨著金融市場的發(fā)展,越來越多人選擇投資黃金作為理財?shù)氖侄,下面?/span>A市把黃金作為理財產(chǎn)品的投資人的年齡情況統(tǒng)計如下圖所示.

1)求把黃金作為理財產(chǎn)品的投資者的年齡的中位數(shù);(結(jié)果用小數(shù)表示,小數(shù)點后保留兩位有效數(shù)字)

2)現(xiàn)按照分層抽樣的方法從年齡在的投資者中隨機抽取5人,再從這5人中隨機抽取3人進行投資調(diào)查,求恰有1人年齡在的概率.

【答案】1;(2

【解析】

1)先利用頻率和為1計算,再求中位數(shù)得到答案.

2)年齡在的投資者抽取3人,記為AB,C,年齡在的投資者抽取2.記為αb,列出所有情況,統(tǒng)計滿足條件的情況,相除得到答案.

1)依題意,,解得,

故所求中位數(shù)為.

2)年齡在的投資者抽取3人,記為AB,C,年齡在的投資者抽取2.記為α,b,則任取2人,所有的情況為:

,,

,,,共10種,

滿足條件的為,,,,,共6種,

故所求概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體中,,平面⊥平面,四邊形為矩形,,點在線段上,且.

(1)求證:⊥平面;

(2)若,求多面體被平面分成的大、小兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】讀書可以使人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然正氣書籍是文化的重要載體,讀書是承繼文化的重要方式某地區(qū)為了解學生課余時間的讀書情況,隨機抽取了名學生進行調(diào)查,根據(jù)調(diào)查得到的學生日均課余讀書時間繪制成如圖所示的頻率分布直方圖,將日均課余讀書時間不低于分鐘的學生稱為讀書之星,日均課余讀書時間低于分鐘的學生稱為非讀書之星”:已知抽取的樣本中日均課余讀書時間低于分鐘的有

(1)的值;

(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有以上的把握認為讀書之星與性別有關(guān)?

非讀書之星

讀書之星

總計

總計

(3)將上述調(diào)查所得到的頻率視為概率,現(xiàn)從該地區(qū)大量學生中,隨機抽取名學生,每次抽取名,已知每個人是否被抽到互不影響,記被抽取的讀書之星人數(shù)為隨機變量,求的分布列和期望

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當前,以立德樹人為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.某地區(qū)2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分為50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到如下頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳

繩個數(shù)

得分

16

17

18

19

20

)現(xiàn)從樣本的100名學生中,任意選取2人,求兩人得分之和不大于33分的概率;

)若該校初三年級所有學生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差(結(jié)果四舍五入到整數(shù)),已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設(shè)明年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,利用現(xiàn)所得正態(tài)分布模型:

)預(yù)估全年級恰好有1000名學生,正式測試時每分鐘跳193個以上的人數(shù).(結(jié)果四舍五入到整數(shù))

)若在該地區(qū)2020年所有初三畢業(yè)生中任意選取3人,記正式測試時每分鐘跳202個以上的人數(shù)為,求隨機變量的分布列和期望.

附:若隨機變量服從正態(tài)分布,則,

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,已知四邊形是邊長為的正方形,點在底面上的射影為底面的中心點,點在棱上,且的面積為1.

1)若點的中點,求證:平面平面;

2)在棱上是否存在一點使得二面角的余弦值為?若存在,求出點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①;②;③ 這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應(yīng)的問題.

中,內(nèi)角A,B,C的對邊分別為ab,c且滿足________________,,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)參加項目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實的需要,從項目中調(diào)出人參與項目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項目從事售后服務(wù)工作?

2)在(1)的條件下,當從項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足

①存在可以生成的數(shù)列是常數(shù)數(shù)列;

②“數(shù)列中存在某一項”是“數(shù)列為有窮數(shù)列”的充要條件;

③若為單調(diào)遞增數(shù)列,則的取值范圍是;

④只要,其中,則一定存在;

其中正確命題的序號為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列滿足,其中A,B是兩個確定的實數(shù),

1)若,求的前n項和;

2)證明:不是等比數(shù)列;

3)若,數(shù)列中除去開始的兩項外,是否還有相等的兩項,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案