【題目】在①;②;③ 這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中的橫線上,并解答相應(yīng)的問(wèn)題.

中,內(nèi)角A,BC的對(duì)邊分別為a,bc,且滿足________________,求的面積.

【答案】橫線處任填一個(gè)都可以,面積為

【解析】

無(wú)論選哪一個(gè),都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.

在橫線上填寫”.

解:由正弦定理,得.

,

.

,得.

所以.

(若,則這與矛盾),

所以.

,得.

由余弦定理及

,

.代入,解得.

所以.

在橫線上填寫”.

解:由及正弦定理,得

.

,

所以有.

因?yàn)?/span>,所以.

從而有.

所以

由余弦定理及,

.代入,

解得.

所以.

在橫線上填寫

解:由正弦定理,得.

,得,

所以

由二倍角公式,得.

,得,所以.

所以,即.

由余弦定理及,

.

.代入,

解得.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,的中點(diǎn)

(1)求直三棱柱的全面積;

(2)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=x22xsinα+1的頂點(diǎn)在橢圓x2+my2=1上,這樣的拋物線有且只有兩條,則m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).

1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.

2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著金融市場(chǎng)的發(fā)展,越來(lái)越多人選擇投資黃金作為理財(cái)?shù)氖侄,下面?/span>A市把黃金作為理財(cái)產(chǎn)品的投資人的年齡情況統(tǒng)計(jì)如下圖所示.

1)求把黃金作為理財(cái)產(chǎn)品的投資者的年齡的中位數(shù);(結(jié)果用小數(shù)表示,小數(shù)點(diǎn)后保留兩位有效數(shù)字)

2)現(xiàn)按照分層抽樣的方法從年齡在的投資者中隨機(jī)抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行投資調(diào)查,求恰有1人年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,直線截拋物線所得弦長(zhǎng)為.

1)求的值;

2)若直角三角形的三個(gè)頂點(diǎn)在拋物線上,且直角頂點(diǎn)的橫坐標(biāo)為1,過(guò)點(diǎn)、分別作拋物線的切線,兩切線相交于點(diǎn).

①若直線經(jīng)過(guò)點(diǎn),求點(diǎn)的縱坐標(biāo);

②求的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線軸有兩個(gè)焦點(diǎn),且經(jīng)過(guò)點(diǎn)

(1)的值;

(2)設(shè)為曲線上的動(dòng)點(diǎn),求的最小值;

(3)過(guò)且斜率為的直線羽毛球形線相交于點(diǎn)三點(diǎn),問(wèn)是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列的公比,且、的等差中項(xiàng).

1)求數(shù)列的通項(xiàng)公式;

2)試比較的大小,并說(shuō)明理由;

3)若數(shù)列滿足,在每?jī)蓚(gè)之間都插入個(gè)2,使得數(shù)列變成了一個(gè)新的數(shù)列,試問(wèn):是否存在正整數(shù),使得數(shù)列的前項(xiàng)和?如果存在,求出的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷正確的是(

A.若隨機(jī)變量服從正態(tài)分布,則

B.已知直線平面,直線平面,則“”是“”的充分不必要條件;

C.若隨機(jī)變量服從二項(xiàng)分布:,;

D.的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案