A. | 0 | B. | 1 | C. | 2 | D. | 4 |
分析 設On(x,1),∠OnAB=θ,∠OnBA=φ,作出圖形,利用兩角和的正切可求得tan(θ+φ)=$\frac{tanθ+tanφ}{1-tanθtanφ}$=$\frac{\frac{1}{x}+\frac{1}{5-x}}{1-\frac{1}{x}•\frac{1}{5-x}}$=$\frac{5}{-{x}^{2}+5x-1}$=1,從而可得答案.
解答 解:設On(x,1),∠OnAB=θ,∠OnBA=φ,
則tanθ=$\frac{1}{x}$,tanφ=$\frac{1}{5-x}$,∵∠AOnB=135°,
∴θ+φ=$\frac{π}{4}$,
∴tan(θ+φ)=$\frac{tanθ+tanφ}{1-tanθtanφ}$=$\frac{\frac{1}{x}+\frac{1}{5-x}}{1-\frac{1}{x}•\frac{1}{5-x}}$=$\frac{5}{-{x}^{2}+5x-1}$=1
解得:x=3或x=4,依題意,n=x,即n=3或n=4.
故選:C.
點評 本題考查兩角和的正切,設On(x,1),∠OnAB=θ,∠OnBA=φ,求得tan(θ+φ)=$\frac{tanθ+tanφ}{1-tanθtanφ}$=$\frac{\frac{1}{x}+\frac{1}{5-x}}{1-\frac{1}{x}•\frac{1}{5-x}}$=$\frac{5}{-{x}^{2}+5x-1}$=1是關(guān)鍵,考查轉(zhuǎn)化思想與運算求解能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3+ln2 | B. | 3-ln2 | C. | $\frac{3}{2}$+ln2 | D. | $\frac{3}{2}$-ln2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 變量X與變量Y有關(guān)系的概率為2.5% | |
B. | 變量X與變量Y沒有關(guān)系的概率為97.5% | |
C. | 變量X與變量Y有關(guān)系的概率為97.5% | |
D. | 變量X與變量Y沒有關(guān)系的概率為99% |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | -1 | C. | 1 | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com