對大于1的自然數(shù)m的三次冪,可用奇數(shù)進(jìn)行以下方式的拆分:
23=3+5
33=7+9+11
43=13+15+17+19

若1331在m3的拆分中,第一項(xiàng)的值為
 
考點(diǎn):歸納推理
專題:計(jì)算題,推理和證明
分析:設(shè)m3的“拆分?jǐn)?shù)”中第一個(gè)數(shù)構(gòu)成的數(shù)列為{an},由累加法易得an=n2-n+1,驗(yàn)證可得答案.
解答: 解:設(shè)m3的“拆分?jǐn)?shù)”中第一個(gè)數(shù)構(gòu)成的數(shù)列為{an},
由題可知,a2-a1=2,a3-a2=4,a4-a3=6…an-an-1=2(n-1).
所以an=1+
[2+2(n-1)](n-1)
2
=n2-n+1
經(jīng)驗(yàn)證當(dāng)n=36時(shí),n2-n+1=1261,當(dāng)n=37時(shí),n2-n+1=1333,
∴1331在36行,第一項(xiàng)的值為1261
故答案為:1261.
點(diǎn)評:本題考查歸納推理,得出第n行的第一個(gè)數(shù)的表達(dá)式是解集問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,Sn為其前n項(xiàng)和,且a5=9,S3=9.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)設(shè)數(shù)列bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a、b、c是三角形ABC三邊,且
1
a
+
1
b
2
c
,則∠C的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0).
(1)求橢圓C的方程;
(2)過點(diǎn)F2(1,0)的直線l交橢圓C于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對稱點(diǎn)為Q(M、Q不重合),求證:直線MQ過x軸上一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,α∩β=l,A,B∈α,C∈β,且C∉l,直線AB∩l=M,過A,B,C三點(diǎn)的平面記作γ,則γ與β的交線必通過( 。
A、點(diǎn)AB、點(diǎn)B
C、點(diǎn)C但不過點(diǎn)MD、點(diǎn)C和點(diǎn)M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的直觀圖及三視圖如圖所示,M,N分別是AF,BC的中點(diǎn).

(Ⅰ)寫出這個(gè)幾何體的名稱;
(Ⅱ)求證:MN∥平面CDEF;
(Ⅲ)求多面體A-CDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:對?x∈R,ax2+5>0,命題q:2x2+x-1>0,若命題p∨q為真命題,則實(shí)數(shù)x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)M、N分別在邊AB、AC上,且
AM
=2
MB
,
AN
=
3
5
AC
,線段CM與BN相交于點(diǎn)P,且
AB
=
a
AC
=
b
,則
AP
a
b
表示為( 。
A、
AP
=
4
9
a
+
1
3
b
B、
AP
=
4
9
a
+
2
3
b
C、
AP
=
2
9
a
+
4
3
b
D、
AP
=
4
7
a
+
3
7
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某射擊比賽,開始時(shí)在距目標(biāo)100米處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已在150米處,這時(shí)命中記2分,且停止射擊;若第二次仍未命中還可以進(jìn)行第三次射擊,但此時(shí)目標(biāo)已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分.已知射手的命中率P與目標(biāo)距離x(米)的關(guān)系為P(x)=
k
x2
,且在100米處擊中目標(biāo)的概率為
1
2
,假設(shè)各次射擊相互獨(dú)立.
(Ⅰ)求這名射手在射擊比賽中命中目標(biāo)的概率;
(Ⅱ)求這名射手在比賽中得分ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

同步練習(xí)冊答案