【題目】已知x,y∈R且滿足不等式組 ,當(dāng)k=1時,不等式組所表示的平面區(qū)域的面積為 , 若目標(biāo)函數(shù)z=3x+y的最大值為7,則k的值為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進行年齡調(diào)查,隨機抽取了一天名讀書者進行調(diào)查,將他們的年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.問:
(1)估計在40名讀書者中年齡分布在的人數(shù);
(2)求40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)調(diào)查了某班全部50名同學(xué)參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團 | 未參加書法社團 | |
參加演講社團 | 8 | 6 |
未參加演講社團 | 6 | 30 |
(I)從該班隨機選1名同學(xué),求該同學(xué)至少參加上述一個社團的概率;
(II)在既參加書法社團又參加演講社團的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4,A5,3名女同學(xué)B1,B2,B3,現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)AB=6,在線段AB上任取兩點C、D(端點A、B除外),將線段AB分成三條線段AC、CD、DB.
(1)若分成的三條線段的長度均為正整數(shù),求這三條線段可以構(gòu)成三角形(稱為事件A)的概率;
(2)若分成的三條線段的長度均為正實數(shù),求這三條線段可以構(gòu)成三角形(稱為事件B)的概率;
(3)根據(jù)以下用計算機所產(chǎn)生的20組隨機數(shù),試用隨機數(shù)模擬的方法,來近似計算(2)中事件B的概率, 20組隨機數(shù)如下:
組別 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0.52 | 0.36 | 0.58 | 0.73 | 0.41 | 0.6 | 0.05 | 0.32 | 0.38 | 0.73 |
Y | 0.76 | 0.39 | 0.37 | 0.01 | 0.04 | 0.28 | 0.03 | 0.15 | 0.14 | 0.86 |
組別 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
X | 0.67 | 0.47 | 0.58 | 0.21 | 0.54 | 0.64 | 0.36 | 0.35 | 0.95 | 0.14 |
Y | 0.41 | 0.54 | 0.51 | 0.37 | 0.31 | 0.23 | 0.56 | 0.89 | 0.17 | 0.03> |
(X和Y都是0~1之間的均勻隨機數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】. 問:是否存在正數(shù)m,使得對于任意正數(shù),可使為三角形的三邊構(gòu)成三角形?如果存在:①試寫出一組x,y,m的值,②求出所有m的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線:,曲線:(為參數(shù)), 以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)若射線:()分別交,于兩點, 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線:,曲線:(為參數(shù)), 以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)若射線:()分別交,于兩點, 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若m個不全相等的正數(shù)a1 , a2 , …am依次圍成一個圓圈使每個ak(1≤k≤m,k∈N)都是其左右相鄰兩個數(shù)平方的等比中項,則正整數(shù)m的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中曲線經(jīng)伸縮變換后得到曲線,在以為極點, 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求曲線的參數(shù)方程和的直角坐標(biāo)方程;
(2)設(shè)為曲線上的一點,又向曲線引切線,切點為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com