20.已知0<α<π,若cosα-sinα=-$\frac{\sqrt{5}}{5}$,求:$\frac{2sinαcosα-cosα+1}{1-tanα}$的值.

分析 利用cosα-sinα 的值求出sinα+cosα 的值,解出sinα和cosα 的值,代入所求的式子進行運算.

解答 解:∵cosα-sinα=-$\frac{\sqrt{5}}{5}$,
∴1-2sinα•cosα=$\frac{1}{5}$,
∴2sinα•cosα=$\frac{4}{5}$,
∴(sinα+cosα)2 =1+2sinαcosα=1+$\frac{4}{5}$=$\frac{9}{5}$.
∵0<α<π,
∴sinα+cosα=±$\frac{3\sqrt{5}}{5}$,
與cosα-sinα=-$\frac{\sqrt{5}}{5}$,
聯(lián)立解得:cosα=$\frac{\sqrt{5}}{5}$,sinα=$\frac{2\sqrt{5}}{5}$,或sinα=-$\frac{\sqrt{5}}{5}$(舍去),cosα=-$\frac{2\sqrt{5}}{5}$,
∴tanα=2,
∴$\frac{2sinαcosα-cosα+1}{1-tanα}$=$\frac{2×\frac{2\sqrt{5}}{5}×\frac{\sqrt{5}}{5}-\frac{\sqrt{5}}{5}+1}{1-2}$=$\frac{\sqrt{5}-9}{5}$.

點評 本題考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,三角函數(shù)式的化簡求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡$\frac{sin(π+α)•cos(\frac{3π}{2}-α)•\frac{1}{tan(-α)}}{tan(α-π)•cos(α-2π)•sin(\frac{π}{2}+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若(log2x)2=4,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\frac{x+1}{x-1}$,則f(-x)=$\frac{x-1}{x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+…+C${\;}_{20}^{17}$等于(  )
A.C${\;}_{21}^{17}$B.C${\;}_{21}^{17}$-1C.C${\;}_{21}^{18}$-1D.C${\;}_{21}^{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若A與B是非空集合,則A∩B=A是A=B成立的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等差數(shù)列{an}中,若公差為d,且a1=d,那么有am+an=am+n,類比上述性質(zhì),寫出在等比數(shù)列{an}中類似的性質(zhì):在等比數(shù)列{an}中,若公比為q,且a1=q,則am•an=am+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.根據(jù)科學(xué)研究人的身高是具有遺傳性的,唐三的身高為1.90m,他的爺爺?shù)纳砀?.70m,他的父親的身高為1.80m,他的兒子唐東的身高為1.90m,
(1)請根據(jù)以上數(shù)據(jù)畫出父(x)子(y)身高的散點圖;
(2)根據(jù)父(x)子(y)身高的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=$\widehatx$+$\stackrel{∧}{a}$;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測唐三的孫子唐雨浩將來的身高.
(用最小二乘法求線性回歸方程系數(shù)公式$\widehat=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i-1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)滿足f(x+1)=f(x-1),且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=2x-1,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有4個零點,則實數(shù)k的取值范圍是( 。
A.$[\frac{1}{4},\frac{1}{3})$B.$(0,\frac{1}{2})$C.$(0,\frac{1}{4}]$D.$(\frac{1}{3},\frac{1}{2})$

查看答案和解析>>

同步練習(xí)冊答案