14.對函數(shù)f(x)=ax2+bx+c(a≠0)作x=h(t)的代換,則一定不改變函數(shù)f(x)值域的代換是( 。
A.h(t)=10tB.h(t)=log2tC.h(t)=t2D.$h(t)=\frac{1}{t}$

分析 求出二次函數(shù)的定義域和值域,對選項分析,求出它們的值域,與R比較,即可判斷B正確,A,C,D不正確.

解答 解:函數(shù)f(x)=ax2+bx+c(a≠0)的定義域為R,
a>0時,函數(shù)的值域為[$\frac{4ac-^{2}}{4a}$,+∞);
a<0時,函數(shù)的值域為(-∞,$\frac{4ac-^{2}}{4a}$].
對于A,h(t)=10t>0,可能改變f(x)的值域;
對于B,h(t)=log2t的值域為R,與f(x)的定義域相同,不改變f(x)的值域;
對于C,h(t)=t2的值域為[0,+∞),可能改變f(x)的值域;
對于D,h(t)=$\frac{1}{t}$的值域為(-∞,0)∪(0,+∞),可能改變f(x)的值域.
故選:B.

點評 本題考查函數(shù)的性質(zhì)和運用,主要考查二次函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)和冪函數(shù)的值域,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}sin2x$-$\frac{1}{2}cos2x$+$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)當x∈[-$\frac{π}{2}$,0]時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+$\sqrt{3}$asinC-b-c=0.
(Ⅰ)求A;
(Ⅱ)若a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2-kx-1在[5,+∞)上單調(diào)遞增,則k的取值范圍是(  )
A.(-∞,10)B.(-∞,10]C.[10,+∞)D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.計算:
(1)(lg2)2+lg2×lg50+lg25
(2)${({3^{{{log}_3}4}})^2}+({log_9}16)•({log_4}27)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.f(x)=$\left\{\begin{array}{l}{x^2}+1,x>0\\-2x,x≤0\end{array}$,若f(x)=10,則 x=3或-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若cos(π-α)=$\frac{4}{5}$,且α是第二象限角,則sinα的值為( 。
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補充畫出函數(shù)f(x)的完整圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知關(guān)于x的方程f(x)=m有兩個不等的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=$\sqrt{4-x^2}$-log2x的值域為( 。
A.(-∞,-1)B.(-∞,1]C.[-1,+∞)D.(-1,+∞)

查看答案和解析>>

同步練習冊答案