函數(shù)y=cos2x-2sinx的最小值是
 
考點(diǎn):三角函數(shù)的最值
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:利用三角函數(shù)間的平方關(guān)系配方后可得y=-(sinx+1)2-2,從而可得答案.
解答: 解:∵y=cos2x-2sinx=-sin2x-2sinx+1=-(sinx+1)2-2,
∴當(dāng)sinx=-1時(shí),ymin=-2.
故答案為:-2.
點(diǎn)評(píng):本題考查三角函數(shù)間的最值,著重考查三角函數(shù)間的平方關(guān)系及二次函數(shù)的配方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(sin2x+cos2x)2-2sin22x.
(Ⅰ)求f(x)的最小正周期; 
(Ⅱ)當(dāng)x∈[-
π
8
,
π
8
]時(shí),求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某籃球隊(duì)與其他6支籃球隊(duì)依次進(jìn)行6場(chǎng)比賽,每場(chǎng)均決出勝負(fù),設(shè)這支籃球隊(duì)與其他籃球隊(duì)比賽中獲勝的事件是獨(dú)立的,并且獲勝的概率均為
1
3

(1)求這支籃球隊(duì)首次獲勝前已經(jīng)負(fù)了兩場(chǎng)的概率;
(2)求這支籃球隊(duì)在6場(chǎng)比賽中恰好獲勝3場(chǎng)的概率;
(3)求這支籃球隊(duì)在6場(chǎng)比賽中獲勝場(chǎng)數(shù)的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)f(x)=[x•[x]],其中[x]表示不超過(guò)x的最大整數(shù),當(dāng)x∈[0,n)(n∈N*)時(shí),設(shè)函數(shù)f(x)的值域?yàn)榧螦,記A中的元素個(gè)數(shù)為an,則
an+49
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為園x2+(y-3)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果三棱錐A-BCD的底面BCD是正三角形,頂點(diǎn)A在底面BCD上的射影是△BCD的中心,則這樣的三棱錐稱(chēng)為正三棱錐.給出下列結(jié)論:
①正三棱錐所有棱長(zhǎng)都相等;
②正三棱錐至少有一組對(duì)棱(如棱AB與CD)不垂直;
③當(dāng)正三棱錐所有棱長(zhǎng)都相等時(shí),該棱錐內(nèi)任意一點(diǎn)到它的四個(gè)面的距離之和為定值;
④若正三棱錐所有棱長(zhǎng)均為2
2
,則該棱錐外接球的表面積等于12π.
⑤若正三棱錐A-BCD的側(cè)棱長(zhǎng)均為2,一個(gè)側(cè)面的頂角為40°,過(guò)點(diǎn)B的平面分別交側(cè)棱AC,AD于M,N.則△BMN周長(zhǎng)的最小值等于2
3

以上結(jié)論正確的是
 
(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線經(jīng)過(guò)點(diǎn)P(-2,3)且傾斜角為45°,求直線的斜截式方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率為
2
2
,橢圓C的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察以下各等式:sin25°+sin265°+sin2125°=
3
2
,sin230°+sin290°+sin2150°=
3
2
,猜想出反映一般規(guī)律的等式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案