【題目】某藝校在一天的6節(jié)課中隨機安排語文、數學、外語三門文化課和其他三門藝術課各1節(jié),則在課程表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術課的概率為(用數字作答).
科目:高中數學 來源: 題型:
【題目】設函數f(x)在R上可導,其導函數為f′(x),且函數y=(1﹣x)f′(x)的圖象如圖所示,則下列結論中一定成立的是( )
A.函數f(x)有極大值f(2)和極小值f(1)
B.函數f(x)有極大值f(﹣2)和極小值f(1)
C.函數f(x)有極大值f(2)和極小值f(﹣2)
D.函數f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數;
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知矩形ABCD,AB=1,BC= .將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中( )
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進行數據分析,為了考察甲球員對球隊的貢獻,現(xiàn)作如下數據統(tǒng)計:
球隊勝 | 球隊負 | 總計 | |
甲參加 | 22 | b | 30 |
甲未參加 | c | 12 | d |
總計 | 30 | e | n |
(1)求b,c,d,e,n的值,據此能否有97.7%的把握認為球隊勝利與甲球員參賽有關;
(2)根據以往的數據統(tǒng)計,乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個位置,且出場率分別為:0.2,0.5,0.2,0.1,當出任前鋒、中鋒、后衛(wèi)以及守門員時,球隊輸球的概率依次為:0.4,0.2,0.6,0.2.則:
當他參加比賽時,求球隊某場比賽輸球的概率;
當他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔當前鋒的概率;
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 7.879 | 10.828 |
.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com