19.把長為80cm的鐵絲隨機(jī)截成三段,則每段鐵絲長度都不小于20cm的概率是( 。
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{3}{16}$

分析 設(shè)把長為80cm的鐵絲隨機(jī)截成三段的長度分別為x,y,80-x-y,則由題意知$\left\{\begin{array}{l}{80≥x≥20}\\{80≥y≥20}\\{80≥80-x-y≥20}\end{array}\right.$,以面積為測(cè)度,即可求出概率.

解答 解:設(shè)把長為80cm的鐵絲隨機(jī)截成三段的長度分別為x,y,80-x-y,
則由題意知$\left\{\begin{array}{l}{80≥x≥20}\\{80≥y≥20}\\{80≥80-x-y≥20}\end{array}\right.$,
所以包含事件每段鐵絲長度都不小于20cm所表示的面積為區(qū)域的面積為$\frac{1}{2}×20×20$=200,
而基本事件所表示的平面$\frac{1}{2}×$80×80=3200,
所以由幾何概型的計(jì)算公式即可得出每段鐵絲長度都不小于20cm的概率為$\frac{1}{16}$.
故選A.

點(diǎn)評(píng) 本題考查幾何概型,考查面積的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)集合A={x|a≤x≤a+3},集合B={x|x<-1或x>5}.
(1)若A∩B≠∅,求實(shí)數(shù)a的取值范圍;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸兩端點(diǎn),Q為橢圓上一點(diǎn),使∠AQB=120°,則橢圓離心率e的取值范圍為( 。
A.[$\frac{\sqrt{3}}{2}$,1)B.[$\frac{\sqrt{6}}{3}$,1)C.(0,$\frac{\sqrt{3}}{2}$]D.(0,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,M為A1B1的中點(diǎn),N是AC1與A1C的交點(diǎn).
(Ⅰ)求證:MN∥平面BCC1B1
(Ⅱ)求證:MN⊥平面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)是定義在(0,+∞)上的增函數(shù),對(duì)定義域內(nèi)的任意x,y都滿足f(xy)=f(x)+f(y),
(1)求f(1);
(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某班一次數(shù)學(xué)考試成績(jī)頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為[70,90),[90,110),[110,130),[130,150],已知成績(jī)大于等于90分的人數(shù)為36人,現(xiàn)采用分層抽樣的方式抽取一個(gè)容量為10的樣本.
(1)求每個(gè)分組所抽取的學(xué)生人數(shù);
(2)從數(shù)學(xué)成績(jī)?cè)赱110,150]的樣本中任取2人,求恰有1人成績(jī)?cè)赱110,130)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.用秦九韶算法計(jì)算多項(xiàng)式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1,當(dāng)x=0.4時(shí)的值時(shí),需要做乘法的次數(shù)是6次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=(a2-2a-2)x是增函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-$\frac{1}{x^2}$,且f(-$\frac{1}{3}$)=4f($\frac{1}{2}$).
(1)用定義法證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增;
(2)若存在x∈[1,3],使得f(x)<|x-2|+m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案