【題目】如圖,矩形ABCD中,,,是AD的中點,將沿BE翻折,記為,在翻折過程中,①點在平面BCDE的射影必在直線AC上;②記和與平面BCDE所成的角分別為,,則的最大值為0;③設二面角的平面角為,則.其中正確命題的個數是( )
A.0B.1C.2D.3
科目:高中數學 來源: 題型:
【題目】在《周髀算經》中,把圓及其內接正方形稱為圓方圖,把正方形及其內切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設計和建筑領域有著廣泛的應用.山西應縣木塔是我國現存最古老、最高大的純木結構樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現方圓的切點正好位于塔身和塔頂的分界.經測量發(fā)現,木塔底層的邊不少于米,塔頂到點的距離不超過米,則該木塔的高度可能是(參考數據:)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)設點.若直與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數的定義域為,其中,.
(1)若,判斷的單調性;
(2)當,設函數在區(qū)間上恰有一個零點,求正數a的取值范圍;
(3)當,時,證明:對于,有.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】全國文明城市是中國所有城市品牌中含金量最高、創(chuàng)建難度最大的一個,是反映城市整體文明水平的綜合性榮譽稱號,是目前國內城市綜合類評比中的最高榮譽,也是最具價值的城市品牌,作為普通市民,既是城市文明的最大受益者,更是文明城市的主要創(chuàng)造者,皖北某市為提高市民對文明城市創(chuàng)建的認識,舉辦了“創(chuàng)建文明城市”知識競賽,從所有答卷中隨機抽取400份試卷作為樣本,將樣本的成績(滿分100分,成績均為不低于40分的整數)分成六段:后得到如圖所示的頻率分布直方圖.
(Ⅰ)求樣本的平均數;
(Ⅱ)現從該樣本成績在與兩個分數段內的市民中按分層抽樣選取6人,求從這6人中隨機選取2人,且2人的競賽成績之差的絕對值大于20的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線AC與BD相交于點O,四邊形ACFE為梯形,EF//AC,點E在平面ABCD上的射影為OA的中點,AE與平面ABCD所成角為45°.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓左、右焦點分別為,,離心率為,兩準線間距離為8,圓O的直徑為,直線l與圓O相切于第四象限點T,與y軸交于M點,與橢圓C交于點N(N點在T點上方),且.
(1)求橢圓C的標準方程;
(2)求直線l的方程;
(3)求直線l上滿足到,距離之和為的所有點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】端午節(jié)是我國民間為紀念愛國詩人屈原的一個傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機問卷調查了該市1000名消費者在去年端午節(jié)期間的粽子購買量(單位:克),所得數據如下表所示:
購買量 | |||||
人數 | 100 | 300 | 400 | 150 | 50 |
將煩率視為概率
(1)試求消費者粽子購買量不低于300克的概率;
(2)若該市有100萬名消費者,請估計該市今年在端午節(jié)期間應準備多少千克棕子才能滿足市場需求(以各區(qū)間中點值作為該區(qū)間的購買量).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com