(本題滿分10分)如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,

求證:BD1∥平面AEC.

 

【答案】

在平面AEC中找一直線與BD1平行即可。

【解析】

試題分析:證明:連BD交AC于O,則O為BD的中點,連EO

因為E為DD1的中點,所以EO∥BD1,

EO平面AEC,BD1平面AEC

所以BD1∥平面AEC.

考點:線面平行的判定定理。

點評:本題直接考查線面平行的判定定理,屬于基礎(chǔ)題型。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆河南省高二上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分10分)

如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;

⑵求A1B與平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年甘肅省高三第二次診斷性考試理科數(shù)學試卷 題型:解答題

(本題滿分10分)

如圖,一個圓形游戲轉(zhuǎn)盤被分成6個均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤,轉(zhuǎn)盤停止轉(zhuǎn)動時,箭頭A所指區(qū)域的數(shù)字就是每次游戲所得的分數(shù)(箭頭指向兩個區(qū)域的邊界時重新轉(zhuǎn)動),且箭頭A指向每個區(qū)域的可能性都是相等的.在一次家庭抽獎的活動中,要求每個家庭派一位兒童和一位成人先后分別轉(zhuǎn)動一次游戲轉(zhuǎn)盤,得分情況記為(假設(shè)兒童和成人的得分互不影響,且每個家庭只能參加一次活動).

(Ⅰ)求某個家庭得分為的概率?

(Ⅱ)若游戲規(guī)定:一個家庭的得分為參與游戲的兩人得分之和,且得分大于等于8的家庭可以獲得一份獎品.請問某個家庭獲獎的概率為多少?

(Ⅲ)若共有5個家庭參加家庭抽獎活動.在(Ⅱ)的條件下,記獲獎的家庭數(shù)為,求的分布列及數(shù)學期望.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建省龍巖市高一上學期期末考試數(shù)學試卷 題型:解答題

(本題滿分10分)如圖,四邊形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,

PBAB=2MA.   求證:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆內(nèi)蒙古呼倫貝爾市高二上學期第一次綜合考試理科數(shù)學 題型:解答題

(本題滿分10分)如圖,平行四邊形EFGH的四個頂點分別在空間四邊形ABCD的邊AB、BC、CD、DA上,求證:BD∥面EFGH.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年浙江省臺州中學高二上學期第一次統(tǒng)練試題理科數(shù)學 題型:解答題

本題滿分10分)如圖,在長方體-中,分別是,的中點,分別是,中點,

(Ⅰ)求三棱錐的體積;
(Ⅱ)求證: 

查看答案和解析>>

同步練習冊答案