【題目】已知橢圓的離心率為,分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動(dòng)點(diǎn),面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線與直線關(guān)于軸對(duì)稱.
【答案】(1).(2)證明見(jiàn)解析
【解析】
(1)根據(jù)離心率和面積的最大值為2,即可列出方程,即可求得結(jié)果;
(2)設(shè)出直線的方程,聯(lián)立橢圓方程,根據(jù)韋達(dá)定理,只需求證,則問(wèn)題得證.
(1)因?yàn)闄E圓的離心率為,
所以,即,又,所以,
因?yàn)?/span>面積的最大值為2,所以,即,
又因?yàn)?/span>,所以,,
故橢圓的方程為
(2)由(1)得,
當(dāng)直線的斜率為時(shí),符合題意,
當(dāng)直線的斜率不為時(shí),
設(shè)直線的方程為,代入消去整理得:
,易得
設(shè),則,
記直線的斜率分別為,則
所以,因此直線與直線關(guān)于軸對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,其中a,.
(1)求的單調(diào)區(qū)間;
(2)若存在極值點(diǎn),且,其中,求證:;
(3)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)為拋物線上的動(dòng)點(diǎn),是拋物線的焦點(diǎn),當(dāng)時(shí),.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)作圓:的切線,,分別交拋物線于點(diǎn).當(dāng)時(shí),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖兩個(gè)同心球,球心均為點(diǎn),其中大球與小球的表面積之比為3:1,線段與是夾在兩個(gè)球體之間的內(nèi)弦,其中兩點(diǎn)在小球上,兩點(diǎn)在大球上,兩內(nèi)弦均不穿過(guò)小球內(nèi)部.當(dāng)四面體的體積達(dá)到最大值時(shí),此時(shí)異面直線與的夾角為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,極坐標(biāo)系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.
(1)分別寫出的極坐標(biāo)方程;
(2)直線的參數(shù)方程為(為參數(shù)),點(diǎn)的直角坐標(biāo)為,若直線與曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍,并求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來(lái)了一大批優(yōu)秀的學(xué)生,新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對(duì)是否愿意投入到新生接待工作進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女生 | 40 | 40 |
(1)通過(guò)估算,試判斷男、女哪種性別的學(xué)生愿意投入到新生接待工作的概率更大.
(2)能否有99%的把握認(rèn)為,愿意參加新生接待工作與性別有關(guān)?
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知從1開(kāi)始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,如圖所示,在寶塔形數(shù)表中位于第行,第列的數(shù)記為,比如,,,若,則( )
A.64B.65C.71D.72
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).
求證:(1)直線平面EFG;
(2)直線平面SDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的兩頂點(diǎn)分別為,為雙曲線的一個(gè)焦點(diǎn),為虛軸的一個(gè)端點(diǎn),若在線段上(不含端點(diǎn))存在兩點(diǎn),使得,則雙曲線的漸近線斜率的平方的取值范圍是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com