【題目】已知 若存在互不相同的四個(gè)實(shí)數(shù)0<a<b<c<d滿足f(a)=f(b)=f(c)=f(d),則ab+c+2d的取值范圍是( )
A.( ,
B.( ,15)
C.[ ,15]
D.( ,15)

【答案】D
【解析】函數(shù) 由f(a)=f(b)=f(c)=f(d)在(0,2)上有a ,b且 = , 上有c,d且 ,由二次函數(shù)的性質(zhì)知對(duì)稱軸為x=4, ,且d∈(4+ )

∴ab+c+2d ,15)
故答案為:D

對(duì)于分段函數(shù)f(x),兩段都有增減區(qū)間,由a,b,c,d處的函數(shù)值相等,由a,b,c,d的大小關(guān)系知,則a,b分布(0,2],c,d分布在(2,+),可求出ab為1,c+d為8,目標(biāo)式拆分為ab+(c+d)+d,由d的范圍得到目標(biāo)式的范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的最小正周期為4π,則( )
A.函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱
B.函數(shù)f(x)的圖象關(guān)于直線 對(duì)稱
C.函數(shù)f(x)圖象上的所有點(diǎn)向右平移 個(gè)單位長(zhǎng)度后,所得的圖象關(guān)于原點(diǎn)對(duì)稱
D.函數(shù)f(x)在區(qū)間(0,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinxsin x. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中錯(cuò)誤的是(
A.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
B.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β
C.如果直線a∥平面α,那么a平行于平面α內(nèi)的無(wú)數(shù)條直線
D.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.設(shè)D,E分別為PA,AC中點(diǎn).
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:BC⊥平面PAB;
(Ⅲ)試問(wèn)在線段AB上是否存在點(diǎn)F,使得過(guò)三點(diǎn) D,E,F(xiàn)的平面內(nèi)的任一條直線都與平面PBC平行?若存在,指出點(diǎn)F的位置并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋數(shù)學(xué)家秦九韶所著《數(shù)學(xué)九章》中有“米谷粒分”問(wèn)題:糧倉(cāng)開(kāi)倉(cāng)收糧,糧農(nóng)送來(lái)米1512石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約( 。
A.164石
B.178石
C.189石
D.196石

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)銷(xiāo)商經(jīng)銷(xiāo)某種農(nóng)產(chǎn)品,在一個(gè)銷(xiāo)售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷(xiāo)商為下一個(gè)銷(xiāo)售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個(gè)銷(xiāo)售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該農(nóng)產(chǎn)品的利潤(rùn).

(Ⅰ)將T表示為X的函數(shù);
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x2+ax+b)ex , 當(dāng)b<1時(shí),函數(shù)f(x)在(﹣∞,﹣2),(1,+∞)上均為增函數(shù),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(2)證明:f(x)在(﹣1,+∞)上為增函數(shù);
(3)證明:方程f(x)=0沒(méi)有負(fù)數(shù)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案