如圖,∠AOB=60°,OA=2,OB=5,在線段OB上任取一點C,試求:
(1)△AOC為鈍角三角形的概率;
(2)△AOC為銳角三角形的概率.
考點:幾何概型
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)本題是一個等可能事件的概率,試驗發(fā)生包含的事件對應(yīng)的是長度為5的一條線段,滿足條件的事件是組成鈍角三角形,包括兩種情況,第一種∠ACO為鈍角,第二種∠OAC為鈍角,根據(jù)等可能事件的概率得到結(jié)果;
(2)由已知條件利用勾股定理求出△AOC三個角都是銳角時1<OC<4,由此能求出其概率.
解答: 解:(1)由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的事件對應(yīng)的是長度為5的一條線段,
滿足條件的事件是組成鈍角三角形,包括兩種情況
第一種∠ACO為鈍角,這種情況的邊界是∠ACO=90°的時候,此時OC=1
∴這種情況下,滿足要求的0<OC<1.
第二種∠OAC為鈍角,這種情況的邊界是∠OAC=90°的時候,此時OC=4
∴這種情況下,滿足要求4<OC<5.
綜合兩種情況,若△AOC為鈍角三角形,則0<OC<1或4<OC<5.
∴概率P=
2
5
=0.4,
(2)△AOC為銳角三角形時,∠ACO為銳角,且∠OAB是銳角
當(dāng)∠ACO=90°時,有勾股定理求得OC=1,
∠OAC=90°時,由直角三角形中的邊角關(guān)系,解得OC=4,BC=1
綜上,△AOC三個角都是銳角時1<OC<4,
其概率為:P=
4-1
5
=0.6.
點評:本題考查等可能事件的概率,幾何概型的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(3,-1),
OB
=(0,2),若
OC
AB
=0,
AC
OB
,則實數(shù)λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
)
,設(shè)函數(shù)f(x)=
m
n

(Ⅰ)求f(x)在區(qū)間[0,π]上的零點;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于以下說法:
(1)命題“已知x,y∈R”,若x≠2或y≠3,則“x+y≠5”是真命題;
(2)設(shè)f(x)的導(dǎo)函數(shù)為f′(x),若f′(x0)=0,則x0是函數(shù)f(x)的極值點;
(3)對于函數(shù)f(x),g(x),f(x)≥g(x)恒成立的一個充分不必要的條件是f(x)min≥g(x)max;
(4)若定義域為R的函數(shù)y=f(x),滿足f(x)+f(4-x)=2,則其圖象關(guān)于點(2,1)對稱.
其中正確的說法序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于(2x-
1
2
x
12的展開式,求:
(1)各項系數(shù)的和;
(2)奇數(shù)項系數(shù)的和;
(3)偶數(shù)項系數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,an是Sn和1的等差中項,等差數(shù)列{bn}滿足b1+S4=0,b9=a1
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=
1
(bn+16)(bn+18)
,求數(shù)列{cn}的前n項和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題,其中正確的是
 

①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每20分鐘從中抽取一件產(chǎn)品進行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;
②拋擲兩個骰子,則兩個骰子點數(shù)之和大于4的概率為
5
6

③在回歸直線方程y=0.2x+12中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量y平均增加0.2單位;
④對分類變量X與Y,它們的隨機變量K2(χ2)的觀測值k來說,k越大,“X與Y有關(guān)系”的把握程度越大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(0,+∞)上的函數(shù),對任意的x1,x2,當(dāng)x1,x2(x1≠x2)都在(0,+∞)時總有(x1-x2)(f(x1)-f(x2))<0,并滿足f(xy)=f(x)+f(y),f(
1
3
)=1.
(1)求f(1)的值;
(2)求證:f(x)在(0,+∞)上單調(diào)遞減;
(3)如果f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

具有性質(zhì)f(-
1
x
)=-f(x)的函數(shù),我們稱其為滿足“倒負”變換的函數(shù),下列函數(shù):
(1)f(x)=-
1
x
;
(2)f(x)=x-
1
x
; 
(3)f(x)=x+
1
x
; 
(4)f(x)=
x(0<x<1)
0(x=1)
-
1
x
(x>1)
,
其中不滿足“倒負”變換的函數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案