某次文藝晚會(huì)上共演出8個(gè)節(jié)目,其中2個(gè)歌曲,3個(gè)舞蹈,3個(gè)曲藝節(jié)目,求分別滿(mǎn)足下列條件的節(jié)目編排方法有多少種?
(1)一個(gè)歌曲節(jié)目開(kāi)頭,另一個(gè)放在最后壓臺(tái);
(2)2個(gè)歌曲節(jié)目互不相鄰.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專(zhuān)題:應(yīng)用題,排列組合
分析:(1)先排歌曲節(jié)目,再排其他節(jié)目,利用乘法原理,即可得出結(jié)論;
(2)先排3個(gè)舞蹈,3個(gè)曲藝節(jié)目,再利用插空法排唱歌,即可得到結(jié)論.
解答: 解:(1)先排歌曲節(jié)目有
A
2
2
種排法,再排其他節(jié)目有
A
6
6
種排法,所以共有
A
2
2
A
6
6
=1440種排法.
(2)先排3個(gè)舞蹈節(jié)目,3個(gè)曲藝節(jié)目,有
A
6
6
種排法,再?gòu)钠渲?個(gè)空(包括兩端)中選2個(gè)排歌曲節(jié)目,有
A
2
7
種插入方法,所以共有
A
6
6
A
2
7
=30240種排法.
點(diǎn)評(píng):本題考查排列組合知識(shí),考查學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一塊等腰直角三角形ABC的空地,要在這塊空地上開(kāi)辟一個(gè)內(nèi)接矩形EFGH的綠地,已知AB⊥AC,AB=4,綠地面積最大值為( 。
A、6
B、4
2
C、4
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:矩陣A=
a1
12
,B=
2
3
      b
-
1
3
    
2
3

(Ⅰ)若a=2,求矩陣A的特征值和特征向量;
(Ⅱ)若矩陣A與矩陣B為互逆矩陣,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cos(
π
4
+x)=
3
5
,求
sin2x-2sin2x
1-tanx
的值.
(2)已知cos(α-
β
2
)=-
1
9
,sin(
α
2
-β)=
2
3
,且
π
2
<α<π,0<β<
π
2
,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2008年5月12日,四川汶川發(fā)生8.0級(jí)特大地震,通往災(zāi)區(qū)的道路全部中斷.5月12日晚,抗震救災(zāi)指揮部決定從水路(一支隊(duì)伍)、陸路(東南和西北兩個(gè)方向各一支隊(duì)伍)和空中(一支隊(duì)伍)同時(shí)向?yàn)?zāi)區(qū)挺進(jìn).在5月13日,仍時(shí)有較強(qiáng)余震發(fā)生,天氣狀況也不利于空中航行.已知當(dāng)天從水路抵達(dá)災(zāi)區(qū)的概率是
1
2
,從陸路每個(gè)方向抵達(dá)災(zāi)區(qū)的概率都是
1
2
,從空中抵達(dá)災(zāi)區(qū)的概率是
1
4

(Ⅰ)求在5月13日恰有1支隊(duì)伍抵達(dá)災(zāi)區(qū)的概率;
(Ⅱ)求在5月13日抵達(dá)災(zāi)區(qū)的隊(duì)伍數(shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)0≤x≤2時(shí),y=x,當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)為P(3,4),且過(guò)點(diǎn)A(2,2)的拋物線(xiàn)的一部分.
(1)求函數(shù)f(x)在(-∞,-2)上的解析式;
(2)在直角坐標(biāo)系中畫(huà)出函數(shù)f(x)的草圖;
(3)寫(xiě)出函數(shù)f(x)的值域;
(4)寫(xiě)出函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-
b
x
,曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程為7x-4y-12=0,求y=f(x)的解析式和f′(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足
Sn
S2n
為常數(shù),則稱(chēng)該數(shù)列為“優(yōu)”數(shù)列.
(1)判斷an=4n-2是否為“優(yōu)”數(shù)列?并說(shuō)明理由;
(2)若首項(xiàng)為1,且公差不為零的等差數(shù)列{an}為“優(yōu)”數(shù)列,試求出該數(shù)列的通項(xiàng)公式;
(3)若首項(xiàng)為1,且公差不為零的等差數(shù)列{an}為“優(yōu)”數(shù)列,正整數(shù)k,h滿(mǎn)足k+h=2013,求
4
Sk
+
1
Sh
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(n)=1+
1
2
+…+
1
n
,當(dāng)n≥2,n∈N*時(shí)n+f(1)+f(2)+…+f(n-1)=nf(n),請(qǐng)用數(shù)學(xué)歸納法給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案