設(shè)函數(shù)f(x)=sinxcosx,x∈R,則函數(shù)f(x)的最小值是( 。
A、-
1
4
B、-
1
2
C、-
3
2
D、-1
考點(diǎn):二倍角的正弦
專題:三角函數(shù)的求值
分析:根據(jù)函數(shù)f(x)=
1
2
sin2x,-1≤sin2x≤1,求得函數(shù)f(x)的最小值.
解答: 解:∵函數(shù)f(x)=sinxcosx=
1
2
sin2x,-1≤sin2x≤1,∴函數(shù)f(x)的最小值是-
1
2
,
故選:B.
點(diǎn)評(píng):本題主要考查二倍角公式、正弦函數(shù)的值域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-x+alnx
(其中a為常數(shù)).
(Ⅰ)當(dāng)a=-2時(shí),求函數(shù) f(x)的最值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C:x2+y2=1,直線l:x+y=2,則圓心C到直線l的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=1,an+1=-
1
an+1
,記Sn為數(shù)列{an}的前n項(xiàng)和,則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如圖,已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1,M是PB的中點(diǎn).其中正確的是
 

①面PAD⊥面PCD;
②AC與PB所成角的余弦值為
10
5
;
③面AMC與面BMC所成二面角的余弦值為-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A、5B、7C、9D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程
|sinx|
x
=k在(0,+∞)上有兩個(gè)不同的解α,β(α<β),則下面結(jié)論正確的是(  )
A、sinα=αcosβ
B、sinα=-αcosβ
C、cosα=βsinβ
D、sinβ=-βsinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)a和b,定義運(yùn)算a*b,運(yùn)算原理如圖所示,則式子(
1
2
)
-2
*lne2的值為(  )
A、8
B、10
C、12
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)fk(x)=
alnx
xk
為f(x)的k階函數(shù).
(1)求一階函數(shù)f1(x)的單調(diào)區(qū)間;
(2)討論方程f2(x)=1的解的個(gè)數(shù);
(3)求證:3lnn!≤1+23e+33e2+…+n3en-1(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案