已知                     
24

試題分析:根據(jù)題意,由于,則根據(jù)導數(shù)的運算可知把第一個因式看做一個因式,后面的整體看做一個因式,則可知,則可知,故答案為24.
點評:解決的關鍵是對于多項式的理解和運算,整體思想的處理是關鍵,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)設函數(shù),.求函數(shù)的單調(diào)遞減區(qū)間;
(2)證明函數(shù)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)在點(2,f(2))處的切線方程為,則函數(shù)在點(2,g(2))處的的切線方程為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點在曲線上,為曲線在點處的切線的傾斜角,則的取值范圍是__    ____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線在點處的切線方程為(  )
A      B.    C.     D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)
(2)是否存在實數(shù),使上的最小值為,若存在,求出的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)在區(qū)間上的最大值是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對任意x∈R,函數(shù)f(x)的導數(shù)存在,的大小關系為:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當a=1時,求函數(shù)在區(qū)間上的最小值和最大值;
(Ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)a的取值范圍。

查看答案和解析>>

同步練習冊答案