15.已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)當(dāng)a=3時,求h(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)有兩個極值點(diǎn)x1,x2,且x1∈(0,$\frac{1}{2}$),若h(x1)-h(x2)>m恒成立,求m的最大值.

分析 (1)將a=3代入函數(shù)的表達(dá)式,求出函數(shù)h(x)的導(dǎo)數(shù),從而得到函數(shù)的單調(diào)區(qū)間;
(2)求出h′(x),根據(jù)h(x)=f(x)+g(x)有兩個極值點(diǎn)x1,x2,可以確定x1,x2為h′(x)=0的兩個根,從而得到x1x2=$\frac{1}{2}$,可以確定x2>1,求解h(x1)-h(x2),構(gòu)造函數(shù)u(x)=x2-$\frac{1}{{4x}^{2}}$-ln2x2,x≥1,利用導(dǎo)數(shù)研究u(x)的取值范圍,從而可以證得h(x1)-h(x2)>$\frac{3}{4}$-ln2,進(jìn)而求出m的最大值.

解答 解:(1)a=3時,h(x)=x2-3x+lnx,
h′(x)=2x-3+$\frac{1}{x}$=$\frac{{2x}^{2}-3x+1}{x}$=$\frac{(2x-1)(x-1)}{x}$,(x>0),
令h′(x)>0,解得:x>1或0<x<$\frac{1}{2}$,令h′(x)<0,解得:$\frac{1}{2}$<x<1,
∴h(x)在(0,$\frac{1}{2}$),(1,+∞)遞增,在($\frac{1}{2}$,1)遞減;
(2)∵h(yuǎn)(x)=f(x)+g(x)=x2-ax+lnx,
∴h′(x)=$\frac{{2x}^{2}-ax+1}{x}$,(x>0),
∵h(yuǎn)(x)=f(x)+g(x)有兩個極值點(diǎn)x1,x2,
∴x1,x2為h′(x)=0的兩個根,即2x2-ax+1=0的兩個根,
∴x1x2=$\frac{1}{2}$,
∵x1∈(0,$\frac{1}{2}$),
∴x2∈(1,+∞),且axi=2${{x}_{i}}^{2}$+1(i=1,2),
∴h(x1)-h(x2)=(${{x}_{1}}^{2}$-ax1+lnx1)-(${{x}_{2}}^{2}$-ax2+lnx2
=${{x}_{2}}^{2}$-${{x}_{1}}^{2}$+ln$\frac{{x}_{1}}{{x}_{2}}$=${{x}_{2}}^{2}$-$\frac{1}{{{4x}_{2}}^{2}}$-ln2${{x}_{2}}^{2}$,(x2>1),
設(shè)u(x)=x2-$\frac{1}{{4x}^{2}}$-ln2x2,x≥1,
∴u′(x)=$\frac{{({2x}^{2}-1)}^{2}}{{2x}^{3}}$≥0,
∴u(x)>u(1)=$\frac{3}{4}$-ln2,
∴h(x1)-h(x2)>$\frac{3}{4}$-ln2,
∴m≤$\frac{3}{4}$-ln2,
∴m的最大值是:$\frac{3}{4}$-ln2.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,一般導(dǎo)數(shù)的正負(fù)對應(yīng)著函數(shù)的單調(diào)性.利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,一般是求出導(dǎo)函數(shù)對應(yīng)方程的根,然后求出跟對應(yīng)的函數(shù)值,區(qū)間端點(diǎn)的函數(shù)值,然后比較大小即可得到函數(shù)在閉區(qū)間上的最值,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.按如下程序框圖,若輸出結(jié)果為170,則在判斷框內(nèi)應(yīng)補(bǔ)充的條件為( 。
A.i≥7B.i>9C.i≥9D.i>10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.為了了解某市高三學(xué)生的身體發(fā)育情況,抽測了該市50名高三男生的體重(kg),數(shù)據(jù)得到的頻率分布直方圖如圖.根據(jù)右圖可知這50名男生中體重在[56.5,60.5]的人數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x3+sinx+1,則f(lg2)+f(lg$\frac{1}{2}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列向量與$\overrightarrow{a}$=(1,2)共線的是( 。
A.(2,1)B.(1,2)C.(-1,-2)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a>0,b>0,且a+b=4,則下列不等式恒成立的是( 。
A.$\frac{1}{ab}>\frac{1}{2}$B.a2+b2≥8C.$\sqrt{ab}$≥2D.$\frac{1}{a}+\frac{1}$≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x、y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,則z=x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示,x1,x2,x3為某次考試三個評閱人對同一道題的獨(dú)立評分,p為該題的最終得分,當(dāng)x1=6,x2=9,p=10時,x3=(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3-3ax-1(a∈R)
(1)試討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)=0在x∈[0,1]上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案