(
1+i
1-i
)2014
=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:先求(
1+i
1-i
)
2
的值,然后求解表達(dá)式的值.
解答: 解:∵(
1+i
1-i
)
2
=
2i
-2i
=-1,
(
1+i
1-i
)
2014
=((
1+i
1-i
)
2
)
1007
=(-1)1007=-1.
故答案為:-1.
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的乘方運(yùn)算,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R)
(Ⅰ)若函數(shù)f(x)最小值是f(-1)=0,且c=1,F(x)=
f(x),x>0
-f(x),x<0
,求F(3)+F(-4)的值
(Ⅱ)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,2]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x+
1
2
x
)n
的展開(kāi)式中前三項(xiàng)的系數(shù)成等差數(shù)列,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以橢圓
x2
49
+
y2
24
=1
的左焦點(diǎn)為圓心且與雙曲線
x2
16
-
y2
9
=1
的漸近線相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是兩條直線,α,β是兩個(gè)平面,P是一個(gè)點(diǎn),若a∥β,b∥β,a?α,b?α,且
 
(填上一個(gè)條件即可),則有α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=
π
0
sinxdx則二項(xiàng)式(1-
a
x
5的展開(kāi)式中x-3的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓ρ=4sinθ的圓心到直線θ=
π
3
(ρ∈R)
的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x2+2|x|,對(duì)于實(shí)數(shù)x1,x2,給出下列條件:①x1+x2>0,②x1+x2<0,③x
 
2
1
>x
 
2
2
,④x1>|x2|;其中能使f(x1)>f(x2)恒成立的是
 
.(寫(xiě)出所有答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題,其中正確的有( 。
①存在實(shí)數(shù)x,使得sinx+cosx=
3
2
;
②若cosα>0,則α是第一象限角或第四象限角;
③函數(shù)y=sin(
3
4
x+
π
2
)
是偶函數(shù);
④若α是第二象限角,且P(x,y)是α終邊上異于坐標(biāo)原點(diǎn)的一點(diǎn),則cosα=
-x
x2+y2
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案