已知橢圓的中心在坐標原點,兩個焦點分別為,點在橢圓 上,過點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且交于點.
(1) 求橢圓的方程;
(2) 是否存在滿足的點? 若存在,指出這樣的點有幾個(不必求出點的坐標); 若不存在,說明理由.

(1). (2)滿足條件的點有兩個.

解析(1)試題分析:解法1:設(shè)橢圓的方程為,依題意:    
解得:         ∴ 橢圓的方程為.
解法2:設(shè)橢圓的方程為,根據(jù)橢圓的定義得,即, ∵,  ∴.   ∴ 橢圓的方程為.  
(2) 解法1:顯然直線的斜率存在,設(shè)直線的方程為,
消去,得.  
設(shè),則.  
,即.  
∴拋物線在點處的切線的方程為,即.
, ∴.  
同理,得拋物線在點處的切線的方程為.  
解得 
.  ∵,
∴點在橢圓上.  ∴.
化簡得.(*) 由
可得方程(*)有兩個不等的實數(shù)根. ∴滿足條件的點有兩個.    
解法2:設(shè)點,,由,即.
∴拋物線在點處的切線的方程為,
.∵, ∴ .
∵點在切線上,  ∴.       ①        
同理, . ② 綜合①、②得,點的坐標都滿足方程.∵經(jīng)過

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的離心率為軸被曲線截得的線段長等于的短軸長。軸的交點為,過坐標原點的直線相交于點,直線分別與相交于點。

(1)求的方程;
(2)求證:
(3)記的面積分別為,若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得|=3|.
(1)求橢圓的標準方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于,而與拋物線交于兩點,且.

(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線與橢圓相交于兩點,
設(shè)為橢圓上一點,且滿足為坐標原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知坐標平面上點與兩個定點的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線所截得的線段的長為8,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當(dāng)R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為橢圓的左、右焦點,是橢圓上一點,若。
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求由拋物線與它在點和點的切線所圍成的區(qū)域的面積。

查看答案和解析>>

同步練習(xí)冊答案