求由拋物線與它在點(diǎn)和點(diǎn)的切線所圍成的區(qū)域的面積。

解析試題分析:
過點(diǎn)和點(diǎn)的切線方程分別是
兩條切線的交點(diǎn)為
圍成的區(qū)域如圖所示

區(qū)域被直線分成了兩部分

考點(diǎn):定積分的運(yùn)用
點(diǎn)評:解決的關(guān)鍵是能求解交點(diǎn)坐標(biāo),確定出上限和下限,然后借助于微積分基本定理得到,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點(diǎn)B是軸上的動點(diǎn),過B作AB的垂線軸于點(diǎn)Q,若
,.

(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O,直線l與橢圓C相交于P、Q兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線l過橢圓C的左焦點(diǎn),且與圓O交于A、B兩點(diǎn),且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)M是圓C:上的一點(diǎn),且軸,為垂足,點(diǎn)滿足,記動點(diǎn)的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動弦,O為坐標(biāo)原點(diǎn),求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線上任意一點(diǎn)到兩個(gè)定點(diǎn),的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(0,-2)的直線與曲線交于兩點(diǎn),且為原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上 ,且滿足.
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)為軌跡C上兩點(diǎn),且,N(1,0),求實(shí)數(shù),使,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)為橢圓的右頂點(diǎn), 點(diǎn),點(diǎn)在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點(diǎn)的圓截得的弦長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
若直線過點(diǎn)(0,3)且與拋物線y2=2x只有一個(gè)公共點(diǎn),求該直線方程.

查看答案和解析>>

同步練習(xí)冊答案