若向量a(1,λ,2),b(2,12)ab的夾角的余弦值為,λ________

 

2

【解析】由已知得,83(6λ)解得λ=-2λ.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

某造紙廠擬建一座平面圖形為矩形且面積為162m2的三級(jí)污水處理池池的深度一定(平面圖如圖所示),如果池四周?chē)鷫ㄔ靻蝺r(jià)為400/m2中間兩道隔墻建造單價(jià)為248/m2,池底建造單價(jià)為80/m2,水池所有墻的厚度忽略不計(jì).

(1)試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià);

(2)若由于地形限制,該池的長(zhǎng)和寬都不能超過(guò)16m試設(shè)計(jì)污水池的長(zhǎng)和寬,使總造價(jià)最低并求出最低總造價(jià).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

關(guān)于x的不等式x2ax20a2<0任意兩個(gè)解的差不超過(guò)9,a的最大值與最小值的和是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

若平面α的一個(gè)法向量為n(4,1,1)直線l的一個(gè)方向向量為a(2,3,3),lα所成角的正弦值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

如圖在平行六面體ABCDA1B1C1D1,MA1C1B1D1的交點(diǎn).若a,bc,________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖四棱錐P-ABCD,PA底面ABCDABAD,點(diǎn)E在線段AD,CE∥AB.

(1)求證:CE⊥平面PAD;

(2)PAAB1,AD3CD,∠CDA45°,求四棱錐P-ABCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

給出下列命題:

若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線那么這兩個(gè)平面相互垂直;

若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行那么這兩個(gè)平面相互平行;

若兩條平行直線中的一條垂直于直線m,那么另一條直線也與直線m垂直;

若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.

其中,真命題是________(填序號(hào))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,四邊形ABCD為正方形,在四邊形ADPQ,PDQA.QA⊥平面ABCD,QAABPD.

(1)證明:PQ⊥平面DCQ

(2)CP上是否存在一點(diǎn)R,使QR∥平面ABCD若存在,請(qǐng)求出R的位置,若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案