A. | $\frac{63}{8}$ | B. | $\frac{63}{16}$ | C. | -84 | D. | -$\frac{63}{8}$ |
分析 利用定積分的定義求出a的值,再利用二項式展開式的通項公式求出展開式中x3項的系數(shù).
解答 解:a═${∫}_{0}^{\frac{π}{2}}$(-cosx)dx=-sinx${|}_{0}^{\frac{π}{2}}$=-1,
則二項式(ax+$\frac{1}{ax}$)9 =(-x-$\frac{1}{x}$)9=-(x+$\frac{1}{x}$)9,
x3項的系數(shù)為開式中,通項公式為
Tr+1=-${C}_{9}^{r}$•x9-r•${(\frac{1}{x})}^{r}$=-${C}_{9}^{r}$•x9-2r,
令9-2r=3,求得 r=3,
∴展開式中x3項的系數(shù)為
x的系數(shù)為-${C}_{9}^{3}$=-84,
故選:C.
點評 本題考查了定積分的計算問題以及二項式展開式的通項公式應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A'C⊥BD | B. | 四面體 A'-BCD的體積為 $\frac{1}{3}$ | ||
C. | CA'與平面 A'BD所成的角為 30° | D. | ∠BA'C=90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{7}{8}$ | D. | -$\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sum_{i=1}^{n}$(xi-a)最小 | B. | $\sum_{i=1}^{n}$|xi-a|最小 | ||
C. | $\sum_{i=1}^{n}$(xi-a)2最小 | D. | $\frac{1}{n}$$\sum_{i=1}^{n}$|xi-a|最小 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,2] | B. | [-$\frac{1}{4}$,2] | C. | (0,2] | D. | (-$\frac{1}{4}$,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com