【題目】如圖,已知四棱錐,底面是邊長為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點,為線段的中點

(Ⅰ)求證:平面;

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積

【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)

【解析】

(Ⅰ)連接,交于點;根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.

(Ⅰ)證明:連接,交于點

四邊形為菱形 中點

中點

平面,平面 平面

(Ⅱ)為正三角形,中點

平面平面,平面平面,平面

平面,又平面

(Ⅲ)中點

,

由(Ⅱ)知,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 命題,”,則是真命題

B. ”是“”的必要不充分條件

C. 命題“”的否定是:“,

D. ”是“上為增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解創(chuàng)建文明城市過程中學(xué)生對創(chuàng)建工作的滿意情況,相關(guān)部門對某中學(xué)的100名學(xué)生進行調(diào)查.得到如下的統(tǒng)計表:

滿意

不滿意

合計

男生

50

女生

15

合計

100

已知在全部100名學(xué)生中隨機抽取1人對創(chuàng)建工作滿意的概率為.

(1)在上表中相應(yīng)的數(shù)據(jù)依次為;

(2)是否有充足的證據(jù)說明學(xué)生對創(chuàng)建工作的滿意情況與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象向右平移個單位后,再將所得圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,得到的函數(shù)的圖象關(guān)于軸對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ= ,點P的坐標(biāo)為(0, ),則ω=
(2)若在曲線段 與x軸所圍成的區(qū)域內(nèi)隨機取一點,則該點在△ABC內(nèi)的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸交于兩點,且為圓心),過點且斜率為的直線與圓相交于兩點

(Ⅰ)求實數(shù)的值;

(Ⅱ)若,求的取值范圍;

(Ⅲ)若向量與向量共線(為坐標(biāo)原點),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當(dāng)x∈[2,+∞)時,

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點睛】

本題考查的知識點是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=,x∈(-2,2).

(1) 判斷f(x)的奇偶性并說明理由;

(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);

(3) 若f(2+a)+f(1-2a)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F(xiàn)為左焦點,原點O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設(shè)b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.

查看答案和解析>>

同步練習(xí)冊答案