如圖,四棱錐P-ABCD的底面ABCD為一直角梯形,側(cè)面PAD是等邊三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB=2,平面PAD⊥底面ABCD,E是PC的中點(diǎn).
(1)求證:BE∥平面PAD;
(2)求證:BE⊥CD;
(3)求三棱錐P-ACD的體積V.
考點(diǎn):直線與平面平行的判定,棱柱、棱錐、棱臺的體積,空間中直線與直線之間的位置關(guān)系
專題:綜合題,空間位置關(guān)系與距離
分析:(1)證BE∥平面PAD,可先構(gòu)建平面EBM,證明平面EBM∥平面APD,由面面平行,得到線面平行;
(2)取PD的中點(diǎn)F,連接FE,根據(jù)線面垂直的判定及性質(zhì),及等腰三角形性質(zhì),結(jié)合線面垂直的判定定理可得AF⊥平面PDC,又由BE∥AF,可得BE⊥平面PDC;
(3)利用VP-ACD=VC-PAD,即可求三棱錐P-ACD的體積V.
解答: (1)證明:取CD的中點(diǎn)M,連接EM、BM,則四邊形ABMD為矩形
∴EM∥PD,BM∥AD;
又∵BM∩EM=M,
∴平面EBM∥平面APD;
而BE?平面EBM,
∴BE∥平面PAD;…(4分)
(2)證明:取PD的中點(diǎn)F,連接FE,則FE∥DC,BE∥AF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F(xiàn)為PD的中點(diǎn),
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BE∥AF,
∴BE⊥平面PDC,
∴CD⊥BE;…(10分)
(3)解:由(2)知∴CD⊥平面PAD,
∵△PAD是邊長為1的等邊三角形,
∴VP-ACD=VC-PAD=
1
3
×
1
2
×1×1×sin
π
3
×2
=
3
6

∴三棱錐P-ACD的體積為
3
6
…(14分)
點(diǎn)評:本題考查的知識點(diǎn)是直線與平面平行的判定,直線與平面垂直的判定,考查三棱錐P-ACD的體積,熟練掌握線面平行及線面垂直的判定定理是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)(a2-3a+2)+(a-2)i是純虛數(shù),則實(shí)數(shù)a的值為(  )
A、1B、2C、1或2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個盒子中裝有分別標(biāo)有數(shù)字1、2、3、4的4個大小、形狀完全相同的小球,現(xiàn)從中有放回地隨機(jī)抽取2個小球,抽取的球的編號分別記為x1、x2,記ξ=|x1-1|+|x2-2|.
(Ⅰ)求ξ取最大值的概率;
(Ⅱ)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若sin(π+α)=
4
5
,且α是第四象限角,求cos(α-2π)的值.
(2)求
tan(-150°)•cos(-570°)•cos(-1140°)
tan(-210°)•sin(-690°)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和Sn,且Sn=
5
2
n2-
3
2
n(n∈N*),bn=
1
5
(an+4).
(1)求數(shù)列{an}通項(xiàng)公式,并證明{an}是等差數(shù)列
(2)證明不等式
5amn
-
aman
>1對任意m、n∈N*都成立
(3)若數(shù)列dn=3bn+(-1)n-1•λ•2bn(n∈N*),問是否存在非零整數(shù)λ,使得對于任意正整數(shù)n,都有dn+1>dn?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱A1B1C1-ABC中,AB⊥BC,E,F(xiàn)分別是A1B,AC1的中點(diǎn).
(1)求證:EF∥平面ABC;
(2)求證:平面AEF⊥平面AA1B1B;
(3)若A1A=2AB=2BC=2a,求三棱錐F-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,左、右焦點(diǎn)分別為F1、F2,點(diǎn)P的坐標(biāo)為(2,
3
),且F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果圓E:(x-
1
2
2+y2=r2上的所有點(diǎn)都不在橢圓C的外部,求圓E的半徑r的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,SD=AD=2,G是SB的中點(diǎn).
(1)求證:AC⊥SB;
(2)求證:AB∥平面SCD;
(3)求AB與SC所成的角;
(4)求證:平面GAC⊥平面ABCD
(5)求三棱錐B-AGC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在邊長為a的正方形ABCD中,E、F分別為邊BC、CD中點(diǎn),設(shè)
AB
=
α
,
AD
=
β

(1)試用
α
、
β
表示向量
AE
、
AF
;
(2)求向量
AE
AF
夾角的余弦值大。

查看答案和解析>>

同步練習(xí)冊答案