【題目】已知方程x2y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的圖形是圓.

(1)求t的取值范圍;

(2)求圓的面積取最大值時t的值;

(3)若點P(3,4t2)恒在所給圓內,求t的取值范圍.

【答案】(1)-<t<1;(2)t;(3)0<t<

【解析】

(1)先化圓的標準方程,再根據(jù)半徑大于零得不等式,解得t的取值范圍;(2)根據(jù)半徑最大時面積最大,轉化為求半徑最大值,再根據(jù)二次函數(shù)性質求最大值取法即得結果;(3)根據(jù)條件列不等式,解得結果.

(1)方程即(xt-3)2+(y+1-4t2)2=-7t2+6t+1,

r2=-7t2+6t+1>0,<t<1.

(2)r

∴當t(-時,rmax

故當t時,圓的面積最大.

(3)當且僅當32+(4t2)2-2(t+3)×3+2(1-4t2)×4t2+16t4+9<0時,點P在圓內,

8t2-6t<00<t<

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】班上有四位同學申請A,B,C三所大學的自主招生,若每位同學只能申請其中一所大學,且申請其中任何一所大學是等可能的.
(1)求恰有2人申請A大學或B大學的概率;
(2)求申請C大學的人數(shù)X的分布列與數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC= AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若M為棱PC的中點,求異面直線AP與BM所成角的余弦值;
(3)若二面角M﹣BQ﹣C大小為30°,求QM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調性.(不需要證明);

(2)探究是否存在實數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請說明理由;

(3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a0且滿足不等式22a+1>25a﹣2

(1)求實數(shù)a的取值范圍;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))在其定義域內有兩個不同的極值點.

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)記兩個極值點分別為, ),求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若對任意的,總存在,使得,則實數(shù)的取值范圍是( )

A. B. C. D. 以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點

(1)求橢圓的標準方程;

(2)已知橢圓的左焦點為,左、右頂點分別為,經(jīng)過點的直線與橢圓交于兩點,記的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車的推廣給消費者帶來全新消費體驗,迅速贏得廣大消費者的青睞,然而,同時也暴露出管理、停放、服務等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調查小組隨機地對不同年齡段50人進行調查,將調查情況整理如下表:

并且,年齡在的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個年齡段中隨機抽取2人征求意見.

(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;

(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.

【答案】(1);(2).

【解析】試題分析:(1)年齡在[20,25)中共有6人,其中持提倡態(tài)度的人數(shù)為5,其中抽兩人,基本事件總數(shù)n=15,被抽到的2人都持提倡態(tài)度包含的基本事件個數(shù)m=10,由此能求出年齡在[20,25)中被抽到的2人都持提倡態(tài)度的概率.(2)年齡在[40,45)中共有5人,其中持提倡態(tài)度的人數(shù)為3,其中抽兩人,基本事件總數(shù)n′=10,年齡在[40,45)中被抽到的2人至少1人持提倡態(tài)度包含的基本事件個數(shù)m′=9,由此能求出年齡在[40,45)中被抽到的2人至少1人持提倡態(tài)度的概率.

解析:

(1)設在中的6人持“提倡”態(tài)度的為, , , ,持“不提倡”態(tài)度的為.

總的基本事件有(),(),(),(),(),(),(),(),(),(),(),(),(),(),().共15個,其中兩人都持“提倡”態(tài)度的有10個,

所以P==

(2)設在中的5人持“提倡”態(tài)度的為, , ,持“不提倡”態(tài)度的為 .

總的基本事件有(),(),(),(),(),(),(),(),(),(),共10個,其中兩人都持“不提倡”態(tài)度的只有()一種,所以P==

型】解答
束】
22

【題目】以平面直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,已知圓的極坐標方程為直線的參數(shù)方程為為參數(shù)),若交于兩點.

(Ⅰ)求圓的直角坐標方程

(Ⅱ)設,的值.

查看答案和解析>>

同步練習冊答案