精英家教網 > 高中數學 > 題目詳情

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設獎300元,4格各設獎200元,其余4格各設獎100元,點擊某一格即顯示相應金額.某人在一張表中隨機不重復地點擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數學期望

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(133表格中隨機不重復地點擊3格,共有種不同情形,再將事件分類,根據古典概型概率公式求得概率;(2)先確定的所有可能值為300,400,500,600700,再分別求出對應的概率,列出分布列,最后根據數學期望公式求期望.

試題解析:(1)從33表格中隨機不重復地點擊3格,共有種不同情形,則事件:包含兩類情形:第一類是3格各得獎200元;第二類是1格得獎300元,一格得獎200元,一格得獎100元,其中第一類包含種情形,第二類包含種情形

2的所有可能值為300,400500,600700

,

,

的概率分布列為:

X

300

400

500

600

700

P

(元).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函數f(x)在區(qū)間[1,+∞)上是減函數,求實數a的取值范圍;
(2)設函數g(x)=(3a+1)x﹣(a2+a)x2 , 當x>1時,f(x)<g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】f(x)=x3-3ax2+2bxx=1處有極小值-1.

(1)求a、b的值

(2)求出f(x)的單調區(qū)間;

(3)求f(x)的極大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“a<﹣2”是“函數f(x)=ax+3在區(qū)間[﹣1,2]上存在零點x0”的(
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設獎300元,4格各設獎200元,其余4格各設獎100元,點擊某一格即顯示相應金額.某人在一張表中隨機不重復地點擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(0,﹣1)是拋物線C:x2=2py(p>0)準線上的一點,點F是拋物線C的焦點,點P在拋物線C上且滿足|PF|=m|PA|,當m取最小值時,點P恰好在以原點為中心,F為焦點的雙曲線上,則此雙曲線的離心率為(
A.
B.
C. +1
D. +1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】七巧板是古代中國勞動人民發(fā)明的一種中國傳統智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線E: =1(a>0,b>0),點F為E的左焦點,點P為E上位于第一象限內的點,P關于原點的對稱點為Q,且滿足|PF|=3|FQ|,若|OP|=b,則E的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線y=﹣x2+2x與x軸圍成的封閉區(qū)域為M,向M內隨機投擲一點P(x,y),則P(y>x)=

查看答案和解析>>

同步練習冊答案