分析 由全稱命題的定義,全稱命題應(yīng)包含所有,任意的…等表示全部元素都滿足的語句,如果含有存在、有一個(gè)…等表示非全部元素都滿足的語句的命題為特稱命題,由此判斷可得到答案.
解答 解:存在1+b<0使得命題“$\frac{\sqrt{(a+b)^{2}}}{|1+b|}$=$\frac{a+b}{1+b}$”不成立,
故不是全稱命題,
增加“對(duì)?a,b∈R,且滿足1+b>0,a+b≥0”,得到命題是全稱命題.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是全稱命題和特稱命題的定義,熟練掌握全稱命題和特稱命題的定義是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1 | B. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1 | C. | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1 | D. | $\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com