分析 (1)通過(guò)${a_{n+1}}=2{S_n}+2(n∈{N^*})$與${a_n}=2{S_{n-1}}+2(n∈{N^*},n≥2)$作差可知${a_{n+1}}=3{a_n}(n∈{N^*},n≥2)$,進(jìn)而可得結(jié)論;
(2)由(1)及an+1=an+(n+2-1)dn可知${d_n}=\frac{{4•{3^{n-1}}}}{n+1}$.①假設(shè)命題成立可知${({d_k})^2}={d_m}{d_p}$,利用m+p=2k可化簡(jiǎn)為k2=mp,得出矛盾;②利用錯(cuò)位相減法計(jì)算即得結(jié)論.
解答 解:(1)∵${a_{n+1}}=2{S_n}+2(n∈{N^*})$,
∴${a_n}=2{S_{n-1}}+2(n∈{N^*},n≥2)$,
兩式相減:${a_{n+1}}=3{a_n}(n∈{N^*},n≥2)$.
又∵a2=2a1+2,
∴a2=2a1+2=3a1,解得a1=2,
∴${a_n}=2•{3^{n-1}}$;
(2)由(1)可知${a_n}=2•{3^{n-1}}$,${a_{n+1}}=2•{3^n}$,
∵an+1=an+(n+2-1)dn,
∴${d_n}=\frac{{4•{3^{n-1}}}}{n+1}$.
①結(jié)論:在數(shù)列{dn}中不存在三項(xiàng)dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列.
理由如下:
假設(shè)在數(shù)列{dn}中存在三項(xiàng)dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列,
則:${({d_k})^2}={d_m}{d_p}$,
即:${({\frac{{4•{3^{k-1}}}}{k+1}})^2}=\frac{{4•{3^{m-1}}}}{m+1}•\frac{{4•{3^{p-1}}}}{p+1}$,$\frac{{16•{3^{2k-2}}}}{{{{({k+1})}^2}}}=\frac{{16•{3^{m+p-2}}}}{{({m+1})•({p+1})}}$(*)
∵m,k,p成等差數(shù)列,
∴m+p=2k,
∴(*)可以化簡(jiǎn)為所以(k+1)2=(m+1)(p+1),
即:k2=mp,
故k=m=p,這與題設(shè)矛盾,
所以在數(shù)列{dn}中不存在三項(xiàng)dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列;
②∵${d_n}=\frac{{4•{3^{n-1}}}}{n+1}$,
∴${T_n}=\frac{2}{{4•{3^0}}}+\frac{3}{{4•{3^1}}}+\frac{4}{{4•{3^2}}}+…+\frac{n+1}{{4•{3^{n-1}}}}$,
$\frac{1}{3}{T_n}=\frac{2}{{4•3{\;}^1}}+\frac{3}{{4•{3^2}}}+\frac{4}{{4•{3^3}}}+…+\frac{n+1}{{4•{3^n}}}$,
兩式相減得:$\frac{2}{3}$Tn=$\frac{2}{4•{3}^{0}}$+$\frac{1}{4•{3}^{1}}$+$\frac{1}{4•{3}^{2}}$+…+$\frac{1}{4•{3}^{n-1}}$-$\frac{n+1}{4•{3}^{n}}$
=$\frac{1}{2}$+$\frac{1}{4}$•$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-$\frac{n+1}{4•{3}^{n}}$
=$\frac{5}{8}$-$\frac{2n+5}{8•{3}^{n}}$,
∴${T_n}=\frac{15}{16}-\frac{3(2n+5)}{{16•{3^n}}}$,
∵${T_{n+1}}-{T_n}=\frac{12n+24}{{16•{3^{n+1}}}}>0$,
∴數(shù)列{Tn}單調(diào)遞增,
而${T_1}=\frac{1}{2},{T_2}=\frac{3}{4}$,
∴滿足題意的n的集合為{1,2}.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20° | B. | 40° | C. | 60° | D. | 80° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3π+6}{4}$ | B. | $\frac{3π+4}{4}$ | C. | π+1 | D. | $\frac{3π+3}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com