【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調性.

【答案】
(1)解:∵函數(shù)f(x)=ax2+blnx,

,

∵f(x)在x=1處有極值

,解得a= ,b=﹣1.


(2)解:由(1)得f(x)= ,其定義域為(0,+∞),

且f′(x)=x﹣ =

當x變化時,f′(x),f(x)的變化情況如下表:

∴函數(shù)f(x)的單調減區(qū)間是(0,1),單調增區(qū)間是(1,+∞).


【解析】(1)由函數(shù)f(x)=ax2+blnx,知 ,由f(x)在x=1處有極值 ,知 ,由此能求出a,b的值.(2)由f(x)= ,其定義域為(0,+∞),f′(x)=x﹣ = .列表討論,能求出函數(shù)f(x)的單調區(qū)間.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調性和函數(shù)的極值是解答本題的根本,需要知道一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;極值反映的是函數(shù)在某一點附近的大小情況.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列推理中屬于歸納推理且結論正確的是(
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推斷:數(shù)列{an}的前n項和Sn=n2
B.由f(x)=xcosx滿足f(﹣x)=﹣f(x)對?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2 , 推斷:橢圓 =1的面積S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推斷:對一切n∈N* , (n+1)2>2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中, ,前項和滿足).

⑴ 求數(shù)列的通項公式;

,求數(shù)列的前項和;

⑶ 是否存在整數(shù)對(其中, )滿足?若存在,求出所有的滿足題意的整數(shù)對;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓O與圓P相交于AB兩點,圓心P在圓O上,圓O的弦BC切圓P于點B,CP及其延長線交圓PD,E兩點,過點EEFCE,交CB的延長線于點F.

(1)求證:B,P,EF四點共圓;

(2)若CD=2,CB=2 ,求出由B,P,E,F四點所確定的圓的直徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)是奇函數(shù),當x∈(0,2)時,f(x)=lnx﹣ax(a> ),當x∈(﹣2,0)時,f(x)的最小值為1,則a的值等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】漳州市“網(wǎng)約車”的現(xiàn)行計價標準是:路程在2km以內(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網(wǎng)約車”的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準備先乘一輛“網(wǎng)約車”行駛8km后,再換乘另一輛“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)y=sin(x﹣ )的圖象向左平移 個單位長度,再將圖象上所有點的橫坐標縮短為原來的 倍(縱坐標不變)得到函數(shù)f(x)的圖象. (Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0, ]時,關于x的方程f(x)﹣m=0有兩個不等的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海關對同時從A、B、C三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進行檢測.

地區(qū)

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來自AB、C各地區(qū)商品的數(shù)量;

(2)若在這6件樣品中隨機抽取2件送往甲機構進一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對任意的實數(shù)滿足: ,且當﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當﹣1≤x<3時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=

查看答案和解析>>

同步練習冊答案