20.函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},-1≤x<1}\\{lgx,x≥1}\end{array}\right.$的零點個數(shù)是2.

分析 由分段函數(shù)討論,從而令f(x)=0,從而解方程即可.

解答 解:當-1≤x<1時,令f(x)=$\sqrt{1-{x}^{2}}$=0,
解得,x=-1;
當x≥1時,lgx=0,
解得,x=1.
故答案為:2.

點評 本題考查了函數(shù)的零點與方程的根的關(guān)系應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.當x<0時,指數(shù)函數(shù)y=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)f(x)=$\frac{2co{s}^{3}x-si{n}^{2}(360°-x)+2sin(90°+x)+1}{2+2co{s}^{2}(180°+x)+cos(-x)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在y軸上截距是-2,斜率為3的直線方程是3x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知直線l的傾斜角α滿足tanα=$\sqrt{3}$,則直線l的傾斜角是( 。
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合M={x|ax2+bx+c>0,x∈R},N={x|Ax2+Bx+C>0,x∈R}(其中a,b,c,A,B,C均為非0實數(shù)).試判斷“$\frac{a}{A}$=$\frac{B}$=$\frac{c}{C}$”是“M=N”的充分條件還是必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.7個人坐成-排照相:
(1)如果甲、乙兩人必須坐在兩端,有多少種坐法?
(2)如果甲不坐在兩端.有多少種坐法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)f(x)=$\frac{si{n}^{2}(2x+\frac{π}{4})+a}{sin(2x+\frac{π}{4})}$,0≤x≤$\frac{π}{4}$,a∈R.
(1)當a=$\frac{3}{4}$時,求f(x)的最小值;
(2)若f(x)的最小值是7,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,若存在常數(shù)t使得方程f(x)=t有兩個不等的實根x1,x2(x1<x2),那么x1•f(x2)的取值范圍為( 。
A.[$\frac{3}{4}$,1)B.[$\frac{1}{8}$,$\frac{\sqrt{3}}{6}$)C.[$\frac{3}{16}$,$\frac{1}{2}$)D.[$\frac{3}{8}$,3)

查看答案和解析>>

同步練習冊答案