11.函數(shù)y=$\sqrt{3}$cos2x+sin2x的最大值和最小正周期分別是π;2.

分析 利用兩角和與差的三角函數(shù)化簡(jiǎn)函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,然后求解周期與最值.

解答 解:函數(shù)y=$\sqrt{3}$cos2x+sin2x=2sin(2x+$\frac{π}{3}$),
函數(shù)的周期為:$\frac{2π}{2}$=π.
函數(shù)的最大值為:2.
故答案為:π;2.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),函數(shù)的周期以及最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+2n,數(shù)列{bn}滿足3nbn+1=(n+1)an+1-nan,且b1=3.
(1)求an,bn
(2)若Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn,并求滿足Tn<7時(shí)n的最大值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.當(dāng)關(guān)于x的方程的根滿足下列條件時(shí),求實(shí)數(shù)a的取值范圍:
(1)方程x2-ax+a2+2=0的兩個(gè)根一個(gè)大于2,另一個(gè)小于2;
(2)方程ax2+3x+4a=0的兩根都小于1;
(3)方程7x2-(a+13)x+a2-a-2=0的一個(gè)根在(0,1)內(nèi),另一個(gè)根在(1,2)內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=$\frac{{x}^{2}}{x-1}$的單調(diào)遞減區(qū)間為( 。
A.(0,2)B.(0,1)∪(1,2)C.(0,1)和(1,2)D.(-∞,0)和(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)P(2,1)
(I)求橢圓C的方程;
(II)直線l與C交于A、B兩點(diǎn),且線段AB的中點(diǎn)D在直線OP(O為坐標(biāo)原點(diǎn))上,當(dāng)△OAB的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.下列說(shuō)法中,正確的是①④⑥.(填序號(hào))
①若非零向量$\overrightarrow{a}$與$\overrightarrow$互相平行,則$\overrightarrow{a}$與$\overrightarrow$方向相同或相反;
②若$\overrightarrow{AB}$與$\overrightarrow{CD}$共線,則點(diǎn)A,B,C,D共線;
③若四邊形ABCD 為平行四邊形,則$\overrightarrow{AB}$=$\overrightarrow{CD}$;
④若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$;
⑤在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,則四邊形ABCD為正方形;
⑥$\overrightarrow{a}$與$\overrightarrow$方向相同且|$\overrightarrow{a}$|=|$\overrightarrow$|與$\overrightarrow{a}$=$\overrightarrow$是一致的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在邊長(zhǎng)為2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E,F(xiàn)是PA和AB的中點(diǎn),求PA與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知直線l1:(m+1)x+(m2-2m)y+4=0,l2:2x+(m-2)y-1=0,如果直線l1∥l2,求m的值;
(2)已知直線l1:nx+(2-n)y=3,l2:(n-2)x+(2n+4)y=2,如果這兩條直線相互垂直,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直三棱柱ABC-A1B1C1中,D,E,F(xiàn)分別為BC,BB1,AA1的中點(diǎn),求證:平面B1FC∥平面EAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案