將函數(shù)y=
3
x+a
的圖象向左平移一個(gè)單位后得到y(tǒng)=f(x)的圖象,再將y=f(x)的圖象繞原點(diǎn)旋轉(zhuǎn)180°后仍與y=f(x)本身的圖象重合,則a的值是
 
考點(diǎn):函數(shù)的圖象與圖象變化
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出f(x)的表達(dá)式,然后根據(jù)y=f(x)的圖象繞原點(diǎn)旋轉(zhuǎn)180°后仍與y=f(x)本身的圖象重合,得到函數(shù)f(x)是奇函數(shù),利用奇函數(shù)的性質(zhì)即可得到結(jié)論.
解答: 解:將函數(shù)y=
3
x+a
的圖象向左平移一個(gè)單位后得到y(tǒng)=f(x)的圖象,
即f(x)=
3
x+a+1
,
若將y=f(x)的圖象繞原點(diǎn)旋轉(zhuǎn)180°后仍與y=f(x)本身的圖象重合,
則函數(shù)y=f(x)為奇函數(shù),
即f(-x)=
3
-x+a+1
=-
3
x+a+1

∴-x+a+1=-x-a-1,
即a=-1,
故答案為:-1.
點(diǎn)評(píng):本題主要考查函數(shù)圖象之間的關(guān)系,利用條件判斷函數(shù)f(x)是奇函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直線y=kx+b(k≠0)分別交雙曲線y=
m
x
(m≠0)
于A、B兩點(diǎn),交x軸于點(diǎn)D,在x軸上有一點(diǎn)C(3,0),且AD=5,CD=4,sin∠ADC=
4
5
,B(-3,n).
(1)求該雙曲線y=
m
x
與直線AB的解析式;
(2)連接BC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-bx-
a
x
(a、b為常數(shù)),在x=1時(shí)取得極值.
(1)求實(shí)數(shù)a-b的值;
(2)當(dāng)a=-1時(shí),求函數(shù)g(x)=f(x)+2x的最小值;
(3)當(dāng)n∈N*時(shí),試比較(
n
n+1
)n(n+1)
(
1
e
)n+2
的大小并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象恒過(guò)點(diǎn)(1,1),則函數(shù)y=f(x-4)的圖象恒過(guò)點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的流程圖,則輸出的k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐的體積為V,過(guò)棱錐的高的三等分點(diǎn)的兩個(gè)平行于底面的截面將棱錐分成三部分的體積比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(1,-2),則函數(shù)y=2f(x)+1的圖象必經(jīng)的點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為R的球面上有A、B兩點(diǎn),它們的球面距離是
π
2
R,則線段AB的長(zhǎng)為( 。
A、
R
2
B、R
C、
2
2
R
D、
2
R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
px+2
x2+1
(其中p為常數(shù),x∈[-2,2]),若對(duì)任意的x,都有f(x)=f(-x)
(1)求p的值;
(2)用定義證明函數(shù)f(x)在(0,2)上是單調(diào)減函數(shù);
(3)若p=1,求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案