15.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-3,2).
(1)求$|{\overrightarrow a-\overrightarrow b}|$;
(2)k為何值時,k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$互相垂直?

分析 (1)由已知向量的坐標(biāo)求出$\overrightarrow{a}-\overrightarrow$的坐標(biāo),然后利用向量模的公式求模;
(2)利用向量的數(shù)乘和坐標(biāo)加減法運算求出k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$得坐標(biāo),再由向量垂直的坐標(biāo)表示列式求得k的值.

解答 解:(1)∵$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-3,2),
∴$\overrightarrow{a}-\overrightarrow=(2,1)-(-3,2)=(5,-1)$,
則$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{{5}^{2}+(-1)^{2}}=\sqrt{26}$;
(2)k$\overrightarrow{a}$+$\overrightarrow$=(2k-3,k+2),$\overrightarrow{a}$-2$\overrightarrow$=(8,-3),
由k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$互相垂直,得8(2k-3)-3(k+2)=0,
解得:k=$\frac{30}{13}$.
∴當(dāng)k=$\frac{30}{13}$時,k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$互相垂直.

點評 本題考查平面向量的數(shù)量積運算,考查向量垂直的坐標(biāo)表示,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2,cosC=-$\frac{1}{4}$,3sinA=2sinB,則邊c為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}是等差數(shù)列,且a2=3,a5=6,數(shù)列{bn}是等比數(shù)列且公比q=2,S4=15
(1)求通項公式an,bn
(2)設(shè){an}的前n項和為Sn,證明:數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是等差數(shù)列
(3)設(shè)數(shù)列$\left\{{\frac{S_n}{n}•{b_n}}\right\}$的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知過點A(-1,0)的動直線l與圓C:x2+(y-3)2=4相交于P、Q兩點,M是PQ中點,l與直線m:x+3y+6=0相交于N.
(1)當(dāng)PQ=2$\sqrt{3}$時,求直線l的方程;
(2)探索$\overrightarrow{AM}$•$\overrightarrow{AN}$是否為定值,若是,請求出其值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.二次函數(shù)y=-x2-mx-1與x軸兩交點分別為A(x1,0),B(x2,0),且x1<x2<3,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+1|+|x-1|.
(Ⅰ)判斷并證明函數(shù)f(x)的奇偶性;
(Ⅱ)作出函數(shù)f(x)的圖象,并求其單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\sqrt{3}cos(\frac{π}{2}-2x)+2{cos^2}x-1$
(1)求函數(shù)f(x)的最小正周期和對稱軸方程;
(2)將f(x)的圖象左移$\frac{π}{12}$個單位,再向上移1個單位得到g(x)的圖象,試求g(x)在區(qū)間$[0,\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=ax3+bx-$\frac{c}{x}+2$,若f(3)=5,則f(-3)的值為( 。
A.3B.-1C.7D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè) $f(x)=\left\{\begin{array}{l}x-2\\ f[{f(x+6)}]\end{array}\right.\begin{array}{l}({x≥10})\\({x<10})\end{array}$,則f(5)的值為11.

查看答案和解析>>

同步練習(xí)冊答案