3.已知拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離等于3p,則直線MF的斜率為( 。
A.±$\sqrt{5}$B.±1C.+$\frac{5}{2}$D.±$\frac{\sqrt{5}}{2}$

分析 設(shè)P(x0,y0)根據(jù)定義點(diǎn)M與焦點(diǎn)F的距離等于P到準(zhǔn)線的距離,求出x0,然后代入拋物線方程求出y0即可求出坐標(biāo).然后求解直線的斜率.

解答 解:根據(jù)定義,點(diǎn)P與準(zhǔn)線的距離也是3P,
設(shè)M(x0,y0),則P與準(zhǔn)線的距離為:x0+$\frac{p}{2}$,
∴x0+$\frac{p}{2}$=3p,x0=$\frac{5}{2}$p,
∴y0=±$\sqrt{5}$p,
∴點(diǎn)M的坐標(biāo)($\frac{5}{2}$p,±$\sqrt{5}$p).
直線MF的斜率為:$\frac{±\sqrt{5}p}{\frac{5p}{2}-\frac{p}{2}}$=$±\frac{\sqrt{5}}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了拋物線的定義和性質(zhì),解題的關(guān)鍵是根據(jù)定義得出點(diǎn)M與焦點(diǎn)F的距離等于M到準(zhǔn)線的距離,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖所示的程序框圖所表示的算法功能是輸出( 。
A.使1×2×4×6×…×n≥2017成立的最小整數(shù)n
B.使1×2×4×6×…×n≥2017成立的最大整數(shù)n
C.使1×2×4×6×…×n≥2017成立的最小整數(shù)n+2
D.使1×2×4×6×…×n≥2017成立的最大整數(shù)n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.用數(shù)學(xué)歸納法證明:1+3+5+…+(2n-1)=n2(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)當(dāng)m=2時(shí),求函數(shù)f(x)的極值;
(2)設(shè)t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3對(duì)任意的m∈(4,6)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x2+2xsinθ-1,x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$].
(1)當(dāng)$θ=\frac{π}{6}$時(shí),求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]上是單調(diào)增函數(shù),且θ∈[0,2π],求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.甲,乙,丙,丁4名學(xué)生按任意次序站成一排,則事件“甲站在兩端”的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(-1,2m+1)$,且$\overrightarrow a∥\overrightarrow b$,則m=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.甲,乙兩人被隨機(jī)分配到A,B,C三個(gè)不同的崗位(一個(gè)人只能去一個(gè)工作崗位),記分配到A崗位的人數(shù)為隨機(jī)變量X,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=$\frac{2}{3}$,方差D(X)=$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$若關(guān)于x的方程$f(x)=\frac{1}{2}x+m$恰有三個(gè)不相等的實(shí)數(shù)解,則m的取值范圍是( 。
A.$[{0,\frac{3}{4}}]$B.$(0,\frac{3}{4})$C.$[{0,\frac{9}{16}}]$D.$(0,\frac{9}{16})$

查看答案和解析>>

同步練習(xí)冊(cè)答案