14.用數(shù)學(xué)歸納法證明:1+3+5+…+(2n-1)=n2(n∈N+

分析 首先證明當(dāng)n=1時(shí)等式成立,再假設(shè)n=k時(shí)等式成立,得到等式1+3+5+…+(2k-1)=k2,下面證明當(dāng)n=k+1時(shí)等式左邊=1+3+5+…+(2k-1)+(2k+1),根據(jù)前面的假設(shè)化簡即可得到結(jié)果,最后得到結(jié)論.

解答 證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,
∴左邊=右邊
(2)假設(shè)n=k時(shí)等式成立,即1+3+5+…+(2k-1)=k2
當(dāng)n=k+1時(shí),等式左邊=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2
綜上(1)(2)可知1+3+5+…+(2n-1)=n2對于任意的正整數(shù)成立.

點(diǎn)評 本題考查用數(shù)學(xué)歸納法證明等式成立,用數(shù)學(xué)歸納法證明問題的步驟是:第一步驗(yàn)證當(dāng)n=n0時(shí)命題成立,第二步假設(shè)當(dāng)n=k時(shí)命題成立,那么再證明當(dāng)n=k+1時(shí)命題也成立.本題解題的關(guān)鍵是利用第二步假設(shè)中結(jié)論證明當(dāng)n=k+1時(shí)成立,本題是一個(gè)中檔題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.有一個(gè)幾何體的三視圖及其尺寸如下(單位:cm),其側(cè)視圖和主視圖是全等的三角形,則該幾何體的表面積為( 。
A.12cm2B.15πcm2C.24πcm2D.36πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a∈R,命題“?x∈(0,+∞),等式lnx=a成立”的否定形式是( 。
A.?x∈(0,+∞),等式lnx=a不成立B.?x∈(-∞,0),等式lnx=a不成立
C.?x0∈(0,+∞),等式lnx0=a不成立D.?x0∈(-∞,0),等式lnx0=a不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,-4),且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.-6B.$\sqrt{10}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知M是由滿足下述條件的函數(shù)構(gòu)成的集合:對任意f(x)∈M,①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
(Ⅰ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對于任意[m,n]⊆D,都存在x0∈(m,n),使得等式f(n)-f(m)=(n-m)f′(x0)成立.試用這一性質(zhì)證明:方程f(x)-x=0有且只有一個(gè)實(shí)數(shù)根;
(Ⅱ)對任意f(x)∈M,且x∈(a,b),求證:對于f(x)定義域中任意的x1,x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,則a的值是( 。
A.2B.1C.1或2D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2sin2x-1,若將其圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于原點(diǎn)對稱,則實(shí)數(shù)a的最小值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離等于3p,則直線MF的斜率為( 。
A.±$\sqrt{5}$B.±1C.+$\frac{5}{2}$D.±$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在公差為d的等差數(shù)列{an}中,“d>1”是“{an}是遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案