【題目】已知函數(shù)

1)若,求函數(shù)的值域;

2)若函數(shù)的定義域、值域都為,且上單調(diào),求實數(shù)b的取值范圍.

【答案】1;(2.

【解析】

1)直接計算即可;(2)當(dāng)函數(shù)上單調(diào)遞增時,可得轉(zhuǎn)化為方程上有兩不等實根的問題,,令,則有解之即可;當(dāng)函數(shù)上單調(diào)遞減時,,可得,兩式相減得或,代入轉(zhuǎn)化為函數(shù)上的值域問題即可.

1)當(dāng)時,,所以函數(shù)的值域為;(2)因為函數(shù)的定義域、值域都為,且上單調(diào),當(dāng)時,函數(shù)上單調(diào)遞增,此時,即,等價于方程上有兩不等實根,令,則有,無解;當(dāng)時,函數(shù)上單調(diào)遞減,此時,即,兩式相減得:,即(舍)或,也即,由可得,將代入可得方程上有解,即為函數(shù)上的值域問題,因為上單調(diào)遞減,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是以為斜邊的直角三角形,,,

1)若線段上有一個點,使得平面,請確定點的位置,并說明理由;

2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校團委對“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計算得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

得到正確結(jié)論是( )

A. 有99%以上的把握認為“學(xué)生性別與中學(xué)生追星無關(guān)”

B. 有99%以上的把握認為“學(xué)生性別與中學(xué)生追星有關(guān)”

C. 在犯錯誤的概率不超過0.5%的前提下,認為“學(xué)生性別與中學(xué)生追星無關(guān)”

D. 在犯錯誤的概率不超過0.5%的前提下,認為“學(xué)生性別與中學(xué)生追星有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京、張家口2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關(guān)代言,決定對旗下的某商品進行一次評估,該商品原來每件售價為25元,年銷售8萬件.

(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?

(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)(0<≤10)與銷售價格(單位:萬元/輛)進行整理,得到如下的對應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價

16

13

9.5

7

4.5

(Ⅰ)試求關(guān)于的回歸直線方程;

(附:回歸方程,

(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,

預(yù)測為何值時,小王銷售一輛該型號汽車所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,均是邊長為2的等邊三角形,點中點,平面平面.

(1)證明:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

同步練習(xí)冊答案