求由拋物線y=-x2+4x及其在點(diǎn)A(0,0)和點(diǎn)B(4,0)處的切線所圍成的圖形的面積.
考點(diǎn):定積分在求面積中的應(yīng)用
專(zhuān)題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出在點(diǎn)A(0,0)和點(diǎn)B(4,0)處的切線方程,可得兩條切線的交點(diǎn)的坐標(biāo),從而可求三角形的面積,再用定積分求面積,即可得出結(jié)論.
解答: 解:∵y=-x2+4x,
∴y′=-2x+4,
∴在點(diǎn)A(0,0)和點(diǎn)B(4,0)處的切線方程分別為y=4x,y=-4x+16,
設(shè)兩條切線的交點(diǎn)為C,則C(2,8),∴S△ABC=16.
4
0
(-x2+4x)dx
=(-
1
3
x3+2x2)
|
4
0
=
32
3
,
∴所求面積為16-
32
3
=
16
3
點(diǎn)評(píng):本題考查定積分在求面積中的應(yīng)用,考查導(dǎo)數(shù)的幾何意義,正確求定積分是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=3x,則f(log32)的值為( 。
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)實(shí)數(shù)a為何值時(shí),復(fù)數(shù)z=a2-8a+15+(a2+3a-28)i
(1)為實(shí)數(shù)?
(2)為純虛數(shù)?
(3)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于y(虛軸)的正半軸上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=bsin2x+a(b<0)的最大值是4,最小值是-2,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).
(1)求a,b的值;
(2)若函數(shù)f(x)在x∈[m,1]上的最小值為3,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:2log510+2log50.5+log20141+log7777.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn}滿足a1=3,anbn=2,bn+1=an(bn-
2
1+an
),n∈N*
(1)求證:數(shù)列{
1
bn
}是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=2an-5,對(duì)于任意給定的正整數(shù)p,是否存在正整數(shù)q,r(p<q<r),使得
1
cp
1
cq
,
1
cr
成等差數(shù)列?若存在,試用p表示q,r;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
sin(π-a)cos(2π-a)sin(-a+
2
)
cos(-a-π)sin(-π-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
sin2xsinφ+cos2xcosφ-sin(
π
2
+φ)(0<φ<
π
2
),且函數(shù)圖象過(guò)點(diǎn)(
π
4
1
4
).
(Ⅰ)求φ的值;
(Ⅱ)將函數(shù) y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
2
3
,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象求函數(shù)y=g(x)在區(qū)間[0,
π
3
]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案