(本小題12分)設(shè),在平面直角坐標系中,已知向量,向量,,動點的軌跡為E. 求軌跡E的方程,并說明該方程所表示曲線的形狀.
即.
當m=0時,方程表示兩直線,方程為;
當時, 方程表示的是圓
當且時,方程表示的是橢圓;
當時,方程表示的是雙曲線.
【解析】
試題分析:根據(jù)得到 =0可求關(guān)于動點M(x,y)的方程,由圓錐曲線的性質(zhì)對k進行討論即可.
解:(1)因為,,,
所以, 即.
當m=0時,方程表示兩直線,方程為;
當時, 方程表示的是圓
當且時,方程表示的是橢圓;
當時,方程表示的是雙曲線.
考點:本題主要考查了利用向量垂直關(guān)系,即其數(shù)量積為零來得到軌跡方程。
點評:解決該試題的關(guān)鍵是對于得到的關(guān)系式表示的軌跡的情況討論是否完備,注意對于m=0的情況的討論,遺漏問題時該題的一個易錯點。
科目:高中數(shù)學 來源:2014屆安徽省高三第一次月考理科數(shù)學試卷(解析版) 題型:解答題
(本小題12分)設(shè)函數(shù),
(1)求的周期和對稱中心;
(2)求在上值域.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆海南省高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題
(本小題12分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求在上的最小值;
查看答案和解析>>
科目:高中數(shù)學 來源:2011年河南省衛(wèi)輝市高二上學期末理科數(shù)學卷 題型:解答題
(本小題12分)
設(shè) 數(shù)列滿足: ,
(1)求證:數(shù)列是等比數(shù)列(要指出首項與公比),
(2)求數(shù)列的通項公式
查看答案和解析>>
科目:高中數(shù)學 來源:2010年甘肅省高一下學期期末考試數(shù)學卷 題型:解答題
(本小題12分)設(shè)函數(shù)
(1)、求函數(shù)的最大值和最小正周期;
(2)、將函數(shù)的圖像按向量平移,使平移后得到的圖像關(guān)于坐標原點成中心對稱,求長度最小的向量。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年新疆農(nóng)七七師高級中學高二下學期第一學段考試理科數(shù)學 題型:解答題
(本小題12分)
設(shè)函數(shù)。
(1)若曲線在點處與直線相切,求的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值點。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com