【題目】某游戲公司對今年新開發(fā)的一些游戲進(jìn)行評測,為了了解玩家對游戲的體驗(yàn)感,研究人員隨機(jī)調(diào)查了300名玩家,對他們的游戲體驗(yàn)感進(jìn)行測評,并將所得數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中.
(1)求這300名玩家測評分?jǐn)?shù)的平均數(shù);
(2)由于該公司近年來生產(chǎn)的游戲體驗(yàn)感較差,公司計(jì)劃聘請3位游戲?qū)<覍τ螒蜻M(jìn)行初測,如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請2位專家二測,二測時(shí),2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為,且每款游戲之間改進(jìn)與否相互獨(dú)立.
(i)對該公司的任意一款游戲進(jìn)行檢測,求該款游戲需要改進(jìn)的概率;
(ii)每款游戲聘請專家測試的費(fèi)用均為300元/人,今年所有游戲的研發(fā)總費(fèi)用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進(jìn)行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費(fèi)用是否超過預(yù)算,并通過計(jì)算說明.
【答案】(1)76;(2)(i);(ii)所需的最高費(fèi)用將超過預(yù)算.計(jì)算見解析
【解析】
(1)利用矩形面積和等于1列式可得,結(jié)合,可解得 的值,再用各區(qū)間的中點(diǎn)值與該矩形的面積相乘后再相加,即得平均值.
(2)(i)利用互斥事件的概率的加法公式可得;
(ii)利用期望公式求出這600款游戲所需的最高費(fèi)用的平均值后,再利用導(dǎo)數(shù)求出最大值即可.
(1)依題意,,
故;
而,
聯(lián)立兩式解得,;
所求平均數(shù)為;
(2)(i)因?yàn)橐豢钣螒虺鯗y被認(rèn)定需要改進(jìn)的概率為,
一款游戲二測被認(rèn)定需要改進(jìn)的概率為,
所以某款游戲被認(rèn)定需要改進(jìn)的概率為:
;
(ii)設(shè)每款游戲的評測費(fèi)用為元,則的可能取值為900,1500;
,
,
故 ;
令 ,
.
當(dāng)時(shí),在上單調(diào)遞增,
當(dāng)時(shí),在上單調(diào)遞減,
所以的最大值為
所以實(shí)施此方案,最高費(fèi)用為
故所需的最高費(fèi)用將超過預(yù)算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠家具車間做A,B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A,B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A,B型桌子分別需要3小時(shí)和1小時(shí);又知木工和漆工每天工作分別不得超過8小時(shí)和9小時(shí),設(shè)該廠每天做A,B型桌子分別為x張和y張.
(1)試列出x,y滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若工廠做一張A,B型桌子分別獲得利潤為2千元和3千元,那么怎樣安排A,B型桌子生產(chǎn)的張數(shù),可使得所得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐的展開側(cè)面圖是一個(gè)半圓,、是底面圓的兩條互相垂直的直徑,為母線的中點(diǎn),已知過與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)、為對稱軸的拋物線的一部分.
(1)證明:圓錐的母線與底面所成的角為;
(2)若圓錐的側(cè)面積為,求拋物線焦點(diǎn)到準(zhǔn)線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
Ⅰ當(dāng)時(shí),求函數(shù)的最小值;
Ⅱ若對任意,恒有成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在上區(qū)間零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的最小值.
(Ⅱ)若在區(qū)間上有兩個(gè)極值點(diǎn),
(i)求實(shí)數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較注射,兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做實(shí)驗(yàn),將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.下表1和表2分別是注射藥物和藥物后的實(shí)驗(yàn)結(jié)果.(皰疹面積單位:)
表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 | ||||
頻數(shù) | 30 | 40 | 20 | 10 |
表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 | |||||
頻數(shù) | 10 | 25 | 20 | 30 | 15 |
(1)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大;
(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認(rèn)為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.
皰疹面積小于 | 皰疹面積不小于 | 合計(jì) | |
注射藥物 | |||
注射藥物 | |||
合計(jì) |
附:
0.100 | 0.050 | 0.025 | 0.01 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合,,,,定義.集合中的元素個(gè)數(shù)記為.規(guī)定:若集合滿足,則稱集合具有性質(zhì).
(1)已知集合,,寫出,的值;
(2)已知集合,其中,證明:有性質(zhì);
(3)已知集合,有性質(zhì),且求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣2mx+x2(m>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象與x軸交于A,B兩點(diǎn),其橫坐標(biāo)分別為x1,x2(x1<x2),線段AB的中點(diǎn)的橫坐標(biāo)為x0,且x1,x2恰為函數(shù)h(x)=lnx﹣cx2﹣bx的零點(diǎn).求證(x1﹣x2)h'(x0)≥+ln2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com