若命題“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”為假命題,則實(shí)數(shù)m的取值范圍是
 
..
考點(diǎn):特稱命題,復(fù)合命題的真假
專題:不等式的解法及應(yīng)用
分析:由于命題P:“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”為假命題,可得¬P:“?x∈R,x2+mx+2m-3≥0”為真命題,因此△≤0,解出即可.
解答: 解:∵命題P:“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”為假命題,
∴¬P:“?x∈R,x2+mx+2m-3≥0”為真命題,∴△≤0,即m2-4(2m-3)≤0,解得2≤m≤6.
∴實(shí)數(shù)m的取值范圍是[2,6].
故答案為:[2,6].
點(diǎn)評(píng):本題考查了非命題、一元二次不等式恒成立與判別式的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=5,Sm=-11,Sm+1=21,則m=( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b都是實(shí)數(shù),a≠0,f(x)=|x-1|+|x-2|.
(1)若f(x)>2,求實(shí)數(shù)x的取值范圍;
(2)若|a+b|+|a-b|≥|a|f(x)對(duì)滿足條件的所有a、b都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的角平分線AD的延長線交它的外接圓于點(diǎn)E.若△ABC的面積S=
1
2
AD•AE,則∠BAC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn(n=1,2,3…),給出下列四個(gè)命題:
①數(shù)列{an}是等比數(shù)列;
②數(shù)列{Sn}是等比數(shù)列;
③?常數(shù)c>0,使
n
i=1
1
ai
≤c(n∈N+)恒成立;
④若Sn(3an-2γ)+2≥0(n=1,2,3…)恒成立,則γ∈(+∞,
10
3
).
以上命題中正確的命題是
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別為△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊,若cosB=
4
5
,a=10,△ABC的面積為42,則b+
a
sinA
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=alnx(a>0)在x=1處的切線與兩坐標(biāo)軸圍成的三角形的面積為4,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,b>1,且lnalnb=
1
4
,則ab( 。
A、有最大值1
B、有最小值1
C、有最大值e
D、有最小值e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1C1C.
(1)求直線C1B與底面ABC所成角的正弦值;
(2)若E為CC1的中點(diǎn),AB=
2
,求平面AEB1與平面A1EB1的夾角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案