已知a>1,b>1,且lnalnb=
1
4
,則ab( 。
A、有最大值1
B、有最小值1
C、有最大值e
D、有最小值e
考點:基本不等式
專題:計算題,不等式的解法及應用
分析:根據(jù)題意,由基本不等式的性質(zhì)可得lna+lnb≤(
lna+lnb
2
2,進而對其變形可得
lna+lnb
2
1
2
,結(jié)合對數(shù)的運算性質(zhì)可得ab≥e;即可得答案.
解答: 解:根據(jù)題意,a>1,b>1,則lna>0,lnb>0;
由基本不等式可得:lna+lnb≤(
lna+lnb
2
2,
又由lnalnb=
1
4
,
lna+lnb
2
1
2
,
變形可得ab≥e;
即ab有最小值e;
故選:D.
點評:本題考查基本不等式的應用以及對數(shù)的運算性質(zhì),注意基本不等式應用的3個條件.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直三棱柱ABC-A1B1C1中,AC=BC,點D是AB的中點.
(1)求證:BC1∥平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B;
(3)若底面ABC為邊長為2的正三角形,BB1=
3
,求三棱錐B1-A1DC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”為假命題,則實數(shù)m的取值范圍是
 
..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從0,1,2,3,4中任取四個數(shù)字組成無重復數(shù)字的四位數(shù),其中偶數(shù)的個數(shù)是
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙M經(jīng)過雙曲線S:
x2
9
-
y2
16
=1的一個頂點和一個焦點,圓心M在雙曲線上S上,則圓心M到雙曲線S的中心的距離為( 。
A、
13
4
7
3
B、
15
4
8
3
C、
13
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中正確的是( 。
A、若
a
b
b
c
,則
a
c
所在直線平行
B、向量
a
、
b
、
c
共面即它們所在直線共面
C、空間任意兩個向量共面
D、若
a
b
,則存在唯一的實數(shù)λ,使
a
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,n是不重合的直線,α,β是不重合的平面,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③如果m?α,n?α,m,n是異面直線,則n與α相交;
④若α∩β=m,n∥m,且n?β,則n∥α,且n∥β.
其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax3-3
2x2+1
(a>2),若在區(qū)間[1,2]上f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0)
(Ⅰ)求證:AC⊥BF;
(Ⅱ)若二面角F-BD-A的大小為60°,求a的值.

查看答案和解析>>

同步練習冊答案